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ABSTRACT
In this paper, we proposed F

2
Key, the first earable physical secu-

rity system based on commercial off-the-shelf headphones. F
2
Key

enables impactful applications, such as enhancing voiceprint-based

authentication systems, reliable voice assistants, audio deepfake

defense, and the legal validity of artifacts. The key idea of F
2
Key

is to establish a stable acoustic sensing field across the user’s face

and embed the user’s facial structures and articulatory habits into a

user-specific generative model that serves as a private key. The pri-

vate key can decrypt the Channel Impulse Response (CIR) profiles

provided by the acoustic sensing field into an inferred spectrogram

that can match the real one calculated from the corresponding

speech, provided that the user’s CIR-spectrogram mapping relation-

ship is consistent with the one embedded in the generative model.

Extensive experiments demonstrate that F
2
Key resists 99.9%, 96.4%,

and 95.3% of speech replay attacks, mimicry attacks, and hybrid

attacks, respectively. We discussed and evaluated F
2
Key from dif-

ferent perspectives, such as the health consideration and identical

twins study, to show the practicality and reliability.
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1 INTRODUCTION
With the rapid development of AI, deepfake scams [2, 24, 61] have

emerged and have caused billions of dollars in losses [22]. Most

deepfake scams are based on deep fakes of video and audio. For
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Figure 1: F2Key, the first earable physical security system
based on COTS headphones and multi-modality that en-
ables several security-related applications; it embeds the real-
world information tied to the speaker in audio.

example, by forging deepfake voices to impersonate victims, scam-

mers call others for fraud [24, 61]; using photos and speech from

the Internet to create deeply synthesized celebrity videos for the

purpose of commercial deception [2]. The counterfeit artifacts (i.e.,
video, audio) reach a level of realism that is almost indistinguishable

from the victims, either in terms of visual images or auditory sounds.

It presents unprecedented challenges to online social networks and

trust among individuals.

To detect these ubiquitous counterfeit artifacts (i.e., audio, video)
or artifacts that have been maliciously tampered with, using the

voiceprint embedded in the audio as a basis for verification is an ef-

fective method to detect audio-visual forgeries [88]. However, since

the obtrusive voiceprint in human speech is pervasive and easily

accessible, it can be recorded and exploited for synthesis, mimicry,

and replay attacks. It is challenging to defend against these at-

tacks since the attacker can acquire the victim’s real voiceprint

and bypass any authentication systems solely based on voiceprint,

provided the recorded audio has sufficient quality. Fortunately,

the audio recorded from the victim is not arbitrary; generating

specific speech requires the use of synthesis attacks and mimicry

attacks. Researchers have investigated how to defend against these

attacks based on spectrum [58, 78, 79], utterance level average [15],

relationships with breathing [18], and injecting subtle adversar-

ial perturbations [32, 74]. However, they all rely on the nuance

between fake and real speech and cannot defend against replay

attacks that use the victim’s speech. Existing solutions also ex-

ploit liveness detection to verify whether the voiceprints in the

audio are produced by a live person or a machine, according to

cues such as breaths [64] and multiple channels [44, 82, 87]. How-

ever, multi-channel approaches require additional sensors, such as

a microphone array [44], and the liveness detection cannot defend

against hybrid attack. For example, an attacker provides liveness
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information by speaking silently while simultaneously replaying

the recorded victim’s speech.

Recent work proposed a speech verification system that can

protect live speeches from malicious alterations by matching the

QR code (registered by a speaker’s speech) placed on site and the

speaker’s speech through meta-information [62]. However, it only

focuses on malicious tampering with speech in videos, neglecting

the role of faces in the video and overlooking how to prevent forgery

and tampering in pure audio without QR codes. Motivated by this

research gap, we propose leveraging the facial information to verify

the user and designing an anti-counterfeiting solution applicable to

pure audio. To extract facial biometric information, existing work

leverages visual information (e.g., facial images from the video) and

computer vision techniques [40, 84]. However, the visually observ-

able faceprint can easily be captured and accessed on the Internet,

and facial images generated with cutting-edge tools [33, 69] have

reached a degree of realism that can easily fool a human. Although

some studies [30, 83] investigate the relationship between mouth

movements and speech to jointly detect deepfakes, they are still

based on 2D images. Recently, more tricky methods of forgery have

emerged; the methods [17, 23, 71] developed to generate realistic

images of the mouth area according to speech content can also be

applied to manufacture deepfakes, which leads to 2D facial images

becoming unreliable.

To address the above issues, we utilize non-visual sensing modal-

ities (e.g., ultrasound) to perceive facial biometric information and

link it with the corresponding speech. Recent studies have demon-

strated that low-frequency ultrasound can detect human facial

movements by establishing an acoustic sensing field across the

user’s face [41, 65]. However, they focused only on sensing appli-

cations, overlooking their research value in security. To fill this

research gap, we propose F
2
Key (Fig. 1), the first earable physical

security system that converts a user’s face into a private key via

commercial off-the-shelf (COTS) headphones. F
2
Key offers a range

of applications, including enhancing voiceprint-based authentica-

tion systems against replay and mimicry attacks, securing voice

assistants to prevent unauthorized access, defending against audio

deepfake fraud in digital communications, and providing legal va-

lidity to media files by embedding the real-world information tied

to the speaker in them.

However, it is non-trivial to instantiate F
2
Key in practice due to

three main challenges: (1) The two speakers of COTS headphones

are occluded by the user’s head when worn. Therefore, using a

speaker as an ultrasound transmitter, even if ultrasound can leak

out, the signal-to-noise ratio (SNR) would be very low, unsatisfying

the need for fine-grained perception. (2) It is challenging to model

the ambiguous relationships between facial structures, articulatory

habits, and the corresponding speech using an earable acoustic

sensing field. (3) Since static features (e.g., facial images) can be

easily stolen and reused, it is challenging to dynamically leverage

the aforementioned relationships in practice.

We propose three countermeasures to address these challenges.

First, we propose a new hardware setup that uses COTS headphones

equipped with a boom microphone and our proposed “auxiliary

spacer” (elaborated in § 5) to increase the quality and SNR of the ul-

trasound received to detect fine-grained facial articulatory gestures.

Second, we design a challenge-response mechanism to model the

Acoustic Sensing Field

Can this mapping relationship be learned?

Figure 2: The image is from a deepfake video, which indi-
rectly led to a cryptocurrency scam [2].

relationships that can tie the acoustic features with the correspond-

ing speech. Finally, we design a generative model to embed this

mapping relationship from the acoustic features to the spectrogram

of user speech as a private key. The private key can dynamically

decrypt the variational channel impulse response (CIR) profiles of

the acoustic sensing field into an inferred spectrogram that can

match the real one, provided that the wearer’s CIR-spectrogram

mapping relationship is consistent with that embedded in the gen-

erative model. The contributions of this paper can be summarized

as follows:

• We design and implement the first earable physical security sys-

tem based on COTS headphones equipped with a boom micro-

phone. By addressing the low SNR and low-quality issues of ultra-

sound, the hardware setup establishes a stable acoustic sensing

field across the user’s face and enables fine-grained articulatory

gesture detection.

• We are the first to investigate linking the user’s facial struc-

tures and articulatory habits with the corresponding speech in

a non-visual way. We illustrate the relationship by proposing a

challenge-response mechanism.

• We propose a holistic solution encompassing hardware design,

verification, and deep learning models. Comprehensive evalua-

tions demonstrate that F
2
Key is reliable and practical and can

defend against 99.9% of replay attacks, 96.4% of mimicry attacks,

and 95.3% of hybrid attacks.

2 MOTIVATION & THREAT MODEL
2.1 Motivation
The severity of voiceprint-based security threats, such as replay at-

tacks and audio deepfakes, has escalated dramatically. These attacks

replicate or manipulate video or audio, posing significant challenges

to traditional social networks and trust between individuals on the

Internet. Motivated by the absence of a wearable physical security

system that can effectively defend against these attacks, we attempt

to fill this research gap by proposing a multi-modality solution.

We also provide a motivating example shown in Fig. 2. The ar-

tifacts created by deepfake technologies have reached a level of

realism that is almost indistinguishable for a human, whether it

be in terms of visual images or auditory sounds. To effectively

prevent artifact forgery, embedding physical information from the

real world into artifacts is a wise choice. We found that there is a
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corresponding relationship between the speaker’s speech and facial

movements. If we can perceive the face in a non-visual way and

combine it with the speaker’s speech, it can greatly increase the

difficulty of video counterfeiting. Since our target is low-frequency

human speech (< 8,000Hz [70]), using ultrasound to perceive the

face is the best choice. This is because the frequency band of ul-

trasound is much higher than that of speech and can be received

by the same microphone (perfect synchronization) along with the

speech. In addition, it does not introduce additional sensors, thus

avoiding an increase in implementation costs. When considering

speech recording and facial perception, it naturally leads to the idea

of using portable and head-mounted headphones in our system.

In this paper, we aim to pioneer the development of the first ear-

able physical security system based on COTS headphones equipped

with a boom microphone. The system can defend against attacks

by jointly using both non-visual facial information and speech, and

it can robustly resist various types of attacks.

2.2 Threat Model
We consider the following attacks to pose a threat to audio artifacts

and voiceprint-based authentication systems:

Synthetic Attack. An attacker uses technologies such as text-to-

speech [35] or voice cloning [3, 16] to synthesize audio forgeries to

impersonate the victim.

Replay Attack. An attacker records the voice of the victim and

plays the recording when required to pass through the authentica-

tion system. Since the playback theoretically contains the leaked

ultrasounds and the voiceprint that is identical to that of the victim,

replay attacks present a considerable challenge to voiceprint-based

authentication systems.

Mimicry Attack. An attacker attempts to deceive the authentica-

tion system based on voiceprint by speaking and mimicking the

voice characteristics (such as pitch, rhythm, accent, etc.) of the

victim. This strategy typically requires a certain level of skill and

familiarity with the victim.

Hybrid Attack. It is a combination of the above attack types. For

example, an attacker might execute a replay attack and a mimicry

attack simultaneously. They could replay the victim’s speech while

pretending to perform the corresponding articulatory gestures (i.e.,
silent speech), thereby deceiving liveness detection or multi-modal

authentication systems.

3 FEASIBILITY STUDY
Inspired by the discovery in § 2.1, we investigate the feasibility

of using COTS headphones equipped with a boom microphone to

create a stable acoustic sensing field across a user’s face and discuss

the defense rationale of F
2
Key.

3.1 Direct Propagation Path
In this section, we first abstract the representative propagation

paths using the speaker and the boom microphone to detect facial

movements. Then, we analyze the acoustic impedance of the ul-

trasound wave in different propagation mediums to indicate the

strongest propagation path.

Pathway N
（Reflection Path）

Pathway 1
(Line of Sight)

Pathway 2
(Direct Propagation Path)

Figure 3: Signal propagation
paths.

Air
Ultrasonic 

WaveReflection

Skin

Figure 4: Ultrasonic waves
propagate from air to skin.

Table 1: Acoustic impedance of different mediums [56].

Medium Air (20
◦
C) Fat Muscle Bone

Acoustic
Impedance 0.0004 × 10

6
1.34 × 10

6
1.71 × 10

6
7.8 × 10

6

(𝑘𝑔/𝑚2𝑠)

In the process of propagating ultrasound from a speaker to the

opposite boom microphone, the multipath effect can be abstracted

into the three most representative paths (i.e., Pathway 1, Pathway 2,
and Pathway N) shown in Fig. 3. Pathway 1 represents the straight

path (i.e., line of sight) in which the signal travels through the

user’s head and reaches the microphone; Pathway 2 represents

the propagation path fitting the user’s face, formed by complex

diffraction and reflection processes; Pathway N represents a path

in the classic multipath propagation, where the signal is reflected

by distant surfaces and subsequently received by the microphone.

As Fig. 4 shows, when ultrasound propagates from air to skin, sig-

nificant reflection and attenuation occur, especially when there is a

significant difference in acoustic impedance between the mediums.

Due to a four-orders-of-magnitude difference in acoustic impedance

between human tissue and air (Tab. 1), most of the ultrasonic en-

ergy is reflected and absorbed upon contact with the skin surface,

resulting in extremely low penetration. Therefore, the energy of

Pathway 1, which alternates between different mediums, such as

air, fat, bone, and muscle, can be considered negligible. If ultra-

sound can leak from an ear pad of headphones and be captured

by the microphone (Pathway 2 and N), the ultrasound energy is

significantly stronger than that of Pathway 1.

Furthermore, due to the far longer reflection distance, the en-

ergy of the ultrasonic wave along Pathway N is significantly lower

than that of Pathway 2, which undergoes complex reflections and

diffractions at the skin surface. Therefore, Pathway 2 is the direct

propagation path with the strongest energy among the numerous

components and is sensitive to perturbations of facial movements;

it establishes the theoretical foundation for the proposed system.

3.2 Acoustic Challenge-Response
To dynamically convert the user’s face into a private key that can

be used in conjunction with the user’s speech, we first conduct an

in-depth analysis of the active areas and informative characteristics

of the human face during speaking.

First, we detect face landmarks on a single-person TV address

video from BBC News to obtain each landmark’s activity level.
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(a) Active areas.

Mel spectrogramCIR profiles

Acoustic sensing field

Challenges

Responses

Utter
Disturb 
sensing 

field

(b) Challenge-response relationships.

Figure 5: Acoustic challenge-response rationales. The faces
in the images are not real for anonymity.

Specifically, we use OpenCV [6] and dlib [39] to detect 68 facial land-

marks in each frame and analyze the cumulative changes between

adjacent frames to measure the activity level for each landmark.

Next, normalize these activity values to a range of 0–100 and project

them onto an AI-generated face to visualize the result. In Fig. 5(a),

the colors represent the activity level in the corresponding facial

regions. Areas that are relatively active during user vocalization are

concentrated in the lower face, with the mouth and chin dominant.

If we establish an acoustic sensing field that can cover these areas,

the sensing field will be perturbed by facial articulatory gestures,

resulting in variations of CIR profiles along the time dimension.

Since the acoustic sensing field is sensitive to the perturbations

of speech-related active areas, we can consider the user’s articu-

latory gestures as challenges to the acoustic sensing field, with

the corresponding responses being variations in the CIR profiles

along the time dimension. The differences in individual facial struc-

tures, articulatory habits, and the consistency of each individual’s

challenge-response mechanism lay the foundation for implement-

ing an anti-spoofing verification approach by F
2
Key.

As Fig. 5(b) shows, when the user performs articulatory gestures

to utter some speech, the gestures can be considered as some chal-

lenges (red areas) for the stable acoustic sensing field. Owing to the

perturbation caused by the facial articulatory gestures, there will

be some responses (variations in the blue area) in the CIR profiles.

Since the speech and variations in the CIR profiles are caused by the

same articulatory gestures, there are strong intrinsic relationships

between them, and we can learn a generative model to translate CIR

profiles into corresponding spectrograms similar to the principle of

acoustic-based silent command recognition. It effectively becomes

a private key by embedding the unique CIR-spectrogram mapping

relationship into a generative model. This key decrypts CIR profiles

into a spectrogram that should match the real one, provided that

the user’s CIR-spectrogram mapping relationship is consistent with

the one embedded in the generative model.

Key insight: Dynamic verification of user legitimacy is

possible by embedding the unique CIR-spectrogram map-

ping relationship of each individual into a user-specific

generative model.

Low-pass Filter High-pass FilterSegmentation

FMCW 
Modulation

CIR Profile 
Calculation

Mel Spectrogram 
Calculation

Generative 
Model

Verification 
Model

F2Key Hardware
(COTS Headphones)

Applications
Grant

User Speech Chirp

Figure 6: F2Key system overview.

By combining facial structures and articulatory gestures, this

challenge-response mechanism greatly enhances the reliability of

voiceprint security, which is otherwise highly susceptible to theft

and vulnerable to replay attacks.

4 SYSTEM OVERVIEW
Based on the above analysis and study, we propose F

2
Key, the

first earable physical security system based on COTS headphones

which can provide speech-included artifact verification and deep-

fake detection. It effectively resists replay, mimicry, and hybrid

attacks by verifying user identity via the CIR-spectrogram mapping

relationship rather than using static features as template.

Fig. 6 illustrates the overview of F
2
Key. When the legitimate

user utters a speech segment, the speaker on the opposite side

of the boom microphone emits frequency modulated continuous

wave (FMCW). With the help of auxiliary spacers, the “escaped”

chirp signal establishes a stable acoustic sensing field across the

user’s face, which precisely tracks the user’s facial articulatory

gestures. The user’s speech and FMCW signals are received by

the microphone at the same time. F
2
Key first filters in user speech

and high-frequency FMCW signals using a low-pass filter and a

high-pass filter, respectively. Thereafter, the low-frequency and

high-frequency components will be calculated into multi-scale Mel

spectrograms and informative CIR profiles, respectively. The CIR

profiles are used as conditions for a registered generative model

to generate inferred Mel spectrograms. Finally, the user-specific

verification model will calculate the similarity between the inferred

Mel spectrograms and the real ones, returning a verification result

according to the verification model’s decision threshold.

Note that, although F
2
Key targets speech, the generative model is

registered by a user’s facial structures and articulatory habits; F
2
Key

links them with the corresponding speech. Therefore, in addition to

serving as a second authentication factor for the voiceprint-based

two-factor authentication (2FA) system, F
2
Key can also be used to

verify the authenticity of speech-included artifacts.
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Direct Propagation PathAcoustic Sensing Field

Figure 7: F2Key uses auxiliary spacers to intentionally create
a gap that allows the ultrasound to “escape” and pass by the
user’s face, thus establishing an acoustic sensing field that is
perturbed by articulatory gestures.

5 HARDWARE DESIGN
To increase the SNR of the FMCW, we propose attaching two auxil-

iary spacers to enhance the leaked ultrasonic waves without any

modification to the COTS headphones.

5.1 Auxiliary Spacers Design
As depicted in Fig. 7, we use skin-friendly material spacers, asym-

metrically attaching them on one side of the ear pad. The asymmet-

ric design intentionally creates a gap on one side for the ultrasonic

waves to “escape” towards the direction of the microphone, while

maintaining close contact with the skin behind the user’s ear on

the opposite side. As a result, a stable acoustic sensing field is es-

tablished across the user’s face as shown in the middle figure of

Fig. 7. We also evaluate the impact of auxiliary spacers in terms of

privacy leakage and listening experience in § 9.7.

5.2 FMCWModulation
The FMCW, known for its ideal autocorrelation property, enables

the separation of signal propagation paths by estimating their

CIR [41, 72]. In this paper, we use the speaker on the headphone

and the opposite-side boom/modular microphone to transmit and

receive the 15 kHz–20 kHz FMCW signal to capture the subtle dis-

placement of the human face caused by articulatory gestures. There

are several reasons why we choose FMCW in this frequency range:

• The upper limit of the frequency response range for most COTS

headphone speakers is 20 kHz and the frequency range is within

the capabilities of most COTS headphones, making it a practical

choice.

• The frequency range was selected because it is higher than the

perceptual upper limit (closer to 15 kHz [55]) of most adults and

thus inaudible for most users, which has been verified in other

studies [41].

• The frequency range provides sufficient bandwidth with a lower

level of autocorrelation side lobes [68], resulting in adequate

perceptual granularity and sensitivity to subtle skin deforma-

tions [41].

For some auditory-sensitive users, such as teenagers, we can

appropriately reduce the bandwidth and use 16 kHz as the starting

frequency of the chirp. In F
2
Key, we configure the FMCW signal

to have a period of 1200 samples at a sampling rate of 48 kHz.

Algorithm 1 CIR profiles informative area extraction

Input: 𝑆 : received audio, 𝑅: reference chirp

Output: 𝐶𝑖 : CIR profiles’ informative area

1: 𝑆ℎ ← Butterworth(𝑆) ⊲ Obtain high frequency component

2: 𝐶𝑜𝑟 ← CrossCorrelation(𝑆ℎ , 𝑅)

3: 𝐶 ← StackSlices(𝐶𝑜𝑟 , LENGTH(𝑅)) ⊲ Obtain full view

4: 𝑚 ←MeanCurve(𝐶) ⊲ Calculate mean curve

5: 𝑚𝑠 ← SavitzkyGolay(𝑚) ⊲ Smooth mean curve

6: 𝑝𝑒𝑎𝑘𝑠 ← FindPeaks(𝑚𝑠 ) ⊲ Find all peaks

7: 𝑖𝑛𝑑𝑒𝑥 ← Index(𝑝𝑒𝑎𝑘𝑠 , 1) ⊲ Get the highest peak’s index

8: 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 − 50

9: 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 + 50 ⊲ Set start and end indices

10: if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 ≥ 0 and 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ≤ LENGTH(𝑅) then
11: 𝐶𝑖 ← 𝐶 [𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 : 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ]
12: else if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 < 0 then
13: 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 + LENGTH(𝑅)
14: 𝐶𝑖 ← Concatenate(𝐶 [𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 :],𝐶 [: 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ])
15: else if 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 > LENGTH(𝑅) then
16: 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ← 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 − LENGTH(𝑅)
17: 𝐶𝑖 ← Concatenate(𝐶 [𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 :],𝐶 [: 𝑒𝑛𝑑𝐼𝑛𝑑𝑒𝑥 ])
18: end if ⊲ Segment and extract informative area

19: 𝐶𝑖 ← 𝐶𝑖 − Mean(𝐶𝑖 , 1) ⊲ Subtract mean along time dimension

20: 𝐶𝑖 ← Clip(𝐶𝑖 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ) ⊲ Clip values below threshold

Then, F
2
Key can update the user’s facial structures 40 times per sec-

ond. Additionally, the minimal distinguishable difference in length

between adjacent ultrasonic propagation paths is 34000/48000 =

0.708 cm. The sensing granularity is adequately fine to capture fa-

cial articulatory gestures. This is corroborated by the consistency

and reproducibility of the CIR profiles obtained in § 6.1.

We also investigate the health implications of F
2
Key by measur-

ing the sound pressure level (SPL) of its ultrasound. The SPL at

the external auditory meatus of a human head model and the mi-

crophone to receive ultrasound are approximately 65 dB and 33 dB,

respectively. These levels are within the recommended limits of

the World Health Organization (WHO) of 70 dB for 24 hours to

prevent hearing impairment [25], offering a safety margin of 5 dB

(3.16 times), thus ensuring the safety of F
2
Key for users.

6 SIGNAL PROCESSING
In this section, we elaborate on calculating the CIR profiles and the

multi-scale Mel spectrograms that serve as generative conditions

and targets, respectively.

6.1 CIR Profiles
We apply a high-pass Butterworth filter with a cutoff frequency

of 15 kHz to remove the vocal component and obtain ultrasonic

signals. These signals are used to analyze variations in the acoustic

sensing field. The CIR profiles calculation and informative area

extraction can be summarized as Algorithm 1.

First, we conduct a cross-correlation analysis to determine the

distance variations of multi-path signal propagation. Then, we

obtain a complex sequence that can approximate the CIR of the echo

propagation channels [11]. To isolate acoustic channels affected

by articulatory gestures and remove irrelevant ones (e.g., those
influenced by surroundings), we segment the CIR values into slices,

each with 1200 consecutive values, covering all channels in a chirp
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sequence. Then, we stack these slices along the time dimension as

full-view CIR profiles. Subsequently, we calculate each channel’s

mean over time and smooth the curve using a Savitzky–Golay

filter. We then locate the highest peak in the smoothed curve and

select 50 channels before and after it as the informative area. If

the peak is near edge channels, we scroll upward or downward

to concatenate channels, forming this area. To emphasize changes

in informative channels, we subtract the mean values over time,

clipping the values below a threshold to zero. This threshold is set

at 10% of the maximum value.

Fig. 8 shows informative CIR profiles of an ultrasound segment,

reflecting articulatory gesture-induced perturbations in the acous-

tic field. It also presents two instances where the same user, wearing

F
2
Key, utters the same sentence twice. Noticeable similarities be-

tween these instances confirm that the CIR profiles accurately track

and consistently reproduce the user’s articulatory gestures.

6.2 Multi-scale Mel Spectrogram
After obtaining the high-frequency component from the received

audio, we apply a low-pass Butterworth filter with a cut-off fre-

quency of 8 kHz to filter in vocal components. Since signals above

8 kHz have minimal impact on speech intelligibility and human per-

ception [51], we resample the filtered vocal component to 16 kHz to

reduce computational burden, according to the Shannon sampling

theorem [52, 63].

We propose a multi-scale Mel spectrogram extraction method

that stacksMel spectrograms of various numerical scales to enhance

the information carried in speech signals, effectively utilizing vo-

calprint. Specifically, we first generate an original Mel spectrogram

using select hyperparameters: a 1600-point Fast Fourier Transform

(FFT) window, a hop length of 400 samples, and a setting of 256

Mel frequency bands. Next, we adopt two levels of clipping to the

original Mel spectrogram. The first level clips the values between 0

and 10, while the second level clips the values between 0 and 1. The

results of the two clips are shown in Fig. 9. This step is performed

to mitigate the effect of extreme values in the spectrograms and

to enhance the contrast between different frequency components.

Finally, the three scales of the Mel spectrograms are stacked as

three channels in RGB format, creating a three-channel RGB image.

This approach aims to facilitate subsequent training of a genera-

tive model, treating the transformation from CIR profiles to Mel

spectrograms as an image-based task.

7 MODEL DESIGN
We now present the design of the F

2
Key models. F

2
Key requires a

pair of a generative model and a verification model for each user,

which are responsible for generating the inferred spectrograms

and determining the match between the generated and the real

spectrograms, respectively.

7.1 Generative Model
We use pix2pix [34] based on the conditional generative adversarial

network (cGAN) to generate inferred spectrograms 𝑆𝑖𝑛𝑓 using CIR

profiles𝐶 as conditions. The generative model extracts the mapping

relationship from CIR profiles to corresponding speech and embeds

it into a trained model for further verification. The implementation

of pix2pix follows the open source repository [89]. Pix2pix is a

powerful generative model that has shown remarkable capabili-

ties in transformations between paired training data. Furthermore,

unlike diffusion models, which require a step-by-step denoising

process that results in exceedingly long generation times [13], mod-

els trained with cGAN take less time, making them suitable for

deployment on mobile devices.

The pix2pix model consists of two primary components: a gen-

erator 𝐺𝜃 and a discriminator 𝐷𝜙 . The generator is tasked with

generating inferred spectrograms 𝑆𝑖𝑛𝑓 that are indistinguishable

from real spectrograms 𝑆𝑟 given the CIR profiles. On the other

hand, the discriminator tries to distinguish between 𝑆𝑟 and 𝑆𝑖𝑛𝑓 .

The generator 𝐺𝜃 takes CIR profiles 𝐶 as input and generates an

inferred spectrogram 𝑆𝑖𝑛𝑓 = 𝐺𝜃 (𝐶). The discriminator 𝐷𝜙 receives

a real image pair (𝑆𝑟 ,𝐶) or a fake image pair (𝑆𝑖𝑛𝑓 ,𝐶) and attempts

to classify them as real or fake. The training process involves alter-

nating between updating the discriminator and the generator. The

discriminator is trained to maximize its ability to correctly classify

real and generated spectrograms, while the generator is trained to

fool the discriminator.

The objective function comprises two components: adversarial

loss and L1 loss. The adversarial loss ensures that the generated

spectrograms are close to those of the real one, while the L1 loss

ensures fidelity to the input CIR profiles. The overall loss function

can be expressed as:

L(𝜃, 𝜙) = L𝑎𝑑𝑣
(
𝐺𝜃 , 𝐷𝜙

)
+ 𝜆L𝐿1 (𝐺𝜃 ) ,

where L𝑎𝑑𝑣 is the adversarial loss, L𝐿1 is the L1 loss, and 𝜆 is a

hyperparameter that balances the two components.

The adversarial loss and the L1 loss can be formulated as:

L
adv

(
𝐺𝜃 , 𝐷𝜙

)
=E𝑆𝑟 ,𝐶∼𝑝 (𝑆𝑟 ,𝐶 )

[
log𝐷𝜙 (𝑆𝑟 ,𝐶 )

]
+ E𝐶∼𝑝 (𝐶 ),𝑆𝑖𝑛𝑓 ∼𝐺𝜃 (𝐶 )

[
log

(
1 − 𝐷𝜙

(
𝑆𝑖𝑛𝑓 ,𝐶

) ) ]
,

L𝐿1 (𝐺𝜃 ) = E𝑆𝑟 ,𝐶∼𝑝 (𝑆𝑟 ,𝐶 ),𝑆𝑖𝑛𝑓 ∼𝐺𝜃 (𝐶 )
[��𝑆𝑟 − 𝑆𝑖𝑛𝑓 ��] .

We set the batch size at 1 and use the Adam optimizer for both

the generator and the discriminator with a learning rate of 0.0002

and the momentum term of Adam 𝛽1 of 0.5. CIR profiles and spectro-

grams are resampled to 256× 256, and the generator uses UNet [57]
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as its backbone. We set 𝜆 = 100 to ensure that the L1 loss has suffi-

cient weight in the overall loss function. The model is trained for

200 epochs.

7.2 Verification Model
Once the generative model𝑀𝐺 is prepared, the discriminator will

be discarded, and we use the generator to generate each 𝑆𝑖𝑛𝑓 using

the corresponding 𝐶 as conditions. The generation process can be

represented as 𝑆𝑖𝑛𝑓 = 𝑀𝐺 (𝐶). Then, the generated spectrograms

𝑆𝑖𝑛𝑓 and the real spectrograms 𝑆𝑟 will be used to train a verification

model based on Siamese neural network [7]. Since the verification

model aims to learn unobtrusive patterns that may appear any-

where in spectrograms, we use the advanced Vision Transformer

(ViT) network as the backbone of the Siamese neural network,

following the implementation of the open source repository [49].

We introduce contrastive learning between positive and negative

samples to improve the verification performance and adopt triplet

loss [60] as our training loss. Specifically, the ViT network takes

each Anchor-Positive or Anchor-Negative pair as input, where the

Anchor, Positive, and Negative are selected as follows:

• Anchor: The real spectrogram 𝑆𝑟 of a legitimate user that corre-

sponds to CIR profiles 𝐶 .

• Positive: The inferred spectrogram 𝑆𝑖𝑛𝑓 generated from 𝐶 and

the legitimate user’s𝑀𝐺 .

• Negative: The inferred spectrogram 𝑆 ′
𝑖𝑛𝑓

generated from un-

paired 𝐶′ or 𝑀′
𝐺
, where 𝐶′ denotes the CIR profiles of other

people when uttering the same sentence, and 𝑀′
𝐺
represents the

generative model of another person. Or the inferred spectrogram

𝑆𝑖𝑛𝑓 generated from 𝐶 and the legitimate user’s 𝑀𝐺 , where 𝐶

indicates CIR profiles of the utterance of the legitimate user’s

other sentences.

For a given Anchor 𝐴𝑖 , the Positive 𝑃𝑖 is explicit. We randomly

select a Negative 𝑁𝑖 that satisfies the aforementioned situations.

Subsequently, we can form two pairs:𝐴𝑖 -𝑃𝑖 and𝐴𝑖 -𝑁𝑖 . The Siamese

network makes inferences twice on 𝐴𝑖 -𝑃𝑖 and 𝐴𝑖 -𝑁𝑖 pairs to obtain

the deep features 𝐴𝑖𝑜𝑢𝑡 , 𝑃𝑖𝑜𝑢𝑡 , 𝑁𝑖𝑜𝑢𝑡 after ViT embedding. The

triplet loss can be represented as:

L𝑡 =
𝑁∑︁
𝑖=1

[𝑑 (𝑓 (𝐴𝑖𝑜𝑢𝑡 ), 𝑓 (𝑃𝑖𝑜𝑢𝑡 )) − 𝑑 (𝑓 (𝐴𝑖𝑜𝑢𝑡 ), 𝑓 (𝑁𝑖𝑜𝑢𝑡 )) + 𝛼]+,

where 𝑑 represents the Euclidean distance, 𝑓 denotes the transition

of ViT, and 𝑁 is the batch size. The []+ operation ensures non-

negativity of the loss values by taking the maximum of the quantity

inside and zero. The hyperparameter 𝛼 controls the margin between

positive and negative pairs. Then, the Euclidean distance between

𝑃𝑖𝑜𝑢𝑡 or 𝑁𝑖𝑜𝑢𝑡 and 𝐴𝑖𝑜𝑢𝑡 is regressed to a range of 0–1 through a

fully connected layer and a sigmoid activation function to represent

the similarity between them. Note that we set the decision threshold

for determining the final results as a trainable parameter, which

participates in the optimization process. This trainable decision

threshold is initially set to 0.5. Finally, we optimize a Hinge loss

between the predictions for positive and negative pairs to further

enhance the model’s ability to distinguish between them. The Hinge

loss aims to increase the gap between the Siamese neural network

output similarity and the decision threshold, ensuring that the

model’s predicted similarities for positive pairs are significantly

above the threshold and for negative pairs well below it. The Hinge

loss is computed as follows:

L
hinge

=

𝑁∑︁
𝑖=1

(
[margin − (Pred(𝐴𝑖 , 𝑃𝑖 ) − 𝜏 ) ]+

+ [margin + (Pred(𝐴𝑖 , 𝑁𝑖 ) − 𝜏 ) ]+
)
,

where 𝜏 denotes the decision threshold, Pred presents the output

similarity between inputs calculated by the Siamese network. There-

fore, the objective function is L = L𝑡 + Lhinge
.

The training settings for the verification model are similar to

those of the generative model. Specifically, the batch size is set

to 16, the learning rate is set to 0.0001 (0.001 for 𝜏 only), and the

maximum epoch is set to 200. The margins used in Triplet loss and

Hinge loss are 3.0 and 0.2 , respectively.

8 VERIFICATION PIPELINE
Fig. 10 shows the interactive verification pipeline of F

2
Key, which

is comprised of two phases: a registration phase (dashed line) and

a verification phase (solid line).

Registration Phase. F2Key first performs signal processing on the

received audio. The low-pass and high-pass filters will separate user

speech and ultrasonic waves from each other; the user speech and

ultrasound are calculated in spectrograms and CIR profiles, respec-

tively. Then the spectrograms and CIR profiles will be used to train

a generative model that embeds the unique mapping relationship

from CIR profiles to spectrograms. Thereafter, the user-specific

generative model was frozen, and a verification model was trained

using a Siamese neural network, triplet loss, and Hinge loss.

Verification Phase.When a user is speaking while wearing F
2
Key,

the generative model generates an inferred spectrogram according

to the embedded mapping relationship, and the verification model

outputs the similarity between the generated and the real spectro-

gram to further indicate that the wearer’s mapping relationship

is consistent with the registered one or not. Finally, the system

outputs the verification result—grant or deny.

When attacked, the CIR profiles of an attacker will differ from

those of the victim, even when uttering the same sentence. Conse-

quently, the generative model will convert the attacker’s CIR pro-

files into an inferred spectrogram that cannot match the attacker’s

real spectrogram (in the case of zero-effort and mimicry attacks)

or the victim’s real spectrogram (in the case of replay and hybrid

attacks). The victim’s articulatory gestures cause variational CIR

profiles 𝐶𝐿 and result in a spectrogram 𝑆𝐿 . The victim-registered

generative model embeds the mapping relationship GL that maps

𝐶𝐿 to 𝑆𝐿 such that 𝑆𝐿 ≈ GL (𝐶𝐿) when Sim(GL (𝐶𝐿), 𝑆𝐿) > 𝜏 , where

Sim and 𝜏 denote the calculation of similarity and the decision

threshold, respectively. If an attacker attempts to access F
2
Key,

they must provide variational CIR profiles and perform mimicry or

hybrid attacks (§ 2.2). However, the attacker’s CIR profiles𝐶𝐴 differ

from those of the victim. Therefore, a fake inferred spectrogram

𝑆𝑖𝑛𝑓 𝐴
= GL (𝐶𝐴) will neither match the victim’s 𝑆𝐿 (ideal playback

in hybrid attack) due to the different CIR profiles provided nor

match the attacker’s 𝑆𝐴 because GL is registered to the victim’s

facial structures and articulatory habits.
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Figure 10: Verification pipeline of F2Key. The legitimate user and attackers will provide distinct CIR profiles based on their facial
structures and articulatory habits. Verification will be granted only if the embedded CIR-spectrogram mapping relationship is
consistent with that of the wearer.

9 EVALUATION
9.1 Experimental Setup
9.1.1 Methodology. Each participant was informed about the pur-

pose and procedure of the experiment. An experimenter assisted

each participant in wearing the F
2
Key hardware. Then, the ex-

perimenter controlled the hardware to emit FMCW signals and

collected the participant’s speech (along with ultrasound) using the

boom microphone.

9.1.2 Dataset and Implementation. We recruited 26 participants (14

females, 12 males), aged 19 to 35, averaging 26.1 years (SD = 3.3), all

experienced with headphones. The experiments were carried out in

a room with the size of 4 × 4 meters. Each participant was asked to

speak 15 security-related sentences (i.e., “Confirm payment”), each

sentence repeated 30 times
1
, while wearing F

2
Key. Then, we built

a dataset that contains 26 × 15 × 30 = 11700 utterances. For each

participant, the data collection process took an average of 17.8min

to complete using an Antlion Mod Microphone [4] mounted on a

Sony WH-1000XM4 [66]. We also implemented F
2
Key on two other

COTS headphones (i.e., Logitech G733 [48] and Audio-Technica

ATH-G1WL [5]) to verify the generalization of F
2
Key on different

headphones. We also leverage the dataset from previous study [19],

which contains 13,680 five-second speech segments collected from

speakers of various accents across 11 countries, to develop a pre-

trained model that incorporates acoustic-speech priors.

Thereafter, we trained a user-specific generative model𝑀𝐺 and a

verification model𝑀𝑉 for each participant. The input to the system

is a segment of user speech along with the corresponding collected

CIR profiles, and the output is the verification result. Our deep

learning models were trained on a workstation equipped with an

AMD Ryzen 3955WX, 4 × 64GB of RAM, and three NVIDIA RTX

3090 GPUs with 24GB of memory each. The models were trained

with only one single 3090 GPU and implemented using the PyTorch

framework version 1.13. Unless specified, the datasets used for

training, validation, and testing in this section are randomly split

in a ratio of 80%, 10%, 10%, respectively.

1
Ethical approval has been obtained (No. H002969).

9.1.3 Evaluation Metrics. As a physical security system that aims

to enable the verification of audio artifacts and enhance voiceprint-

based authentication systems as the second factor of 2FA, we con-

sider the following four metrics:

• True Acceptance Rate (TAR): The rate at which the legitimate

user is granted access correctly.

• False Acceptance Rate (FAR): The rate at which attackers are

granted access as a legitimate user.

• False Rejection Rate (FRR): The rate at which the legitimate user

is denied access as an attacker.

• Equal Error Rate (EER): The point at which the FAR and FRR are

equal. It represents the threshold at which the system’s sensitivity

and specificity are balanced.

9.2 Overall Performance
To evaluate the overall performance of F

2
Key among all partici-

pants. We assembled the trained 𝑀𝐺 and 𝑀𝑉 into an end-to-end

model𝑀 for each participant. We used each participant’s testing

dataset 𝐷𝑡𝑖 to test all user-specific models𝑀𝑗 , where 𝑖 and 𝑗 indi-

cate the participant’s ID number. We conducted 26 × (26 − 1) =
650 zero-effort attack experiments to demonstrate the specificity

of each participant’s CIR-spectrogram mapping relationship. Then,

we obtained a heatmap shaped in 26 × 26, shown in Fig. 11. The

values on the diagonal of the heatmap represent the TAR for each

legitimate user with a minimum of 96% TAR. The other values repre-

sent the FAR of user-specific models when subjected to zero-effort

attacks by attackers. This group of zero-effort attack experiments

presents a series of FARs with a mean of 4.78%. Figs. 12 show that

the curves of all participants follow similar trends. On average,

F
2
Key achieves an EER of 2.7%. We also estimated the EER of each

participant, averaging 2. 89% at a mean decision threshold of 0.53.

Despite these results demonstrating the verification capabilities

of F
2
Key, using it solely for authentication poses risks (e.g., FAR of

4.78%). F
2
Key is designed to enhance voice-print-based authentica-

tion and detect deepfakes. It compensates for the shortcomings of

traditional voiceprint-based authentication, significantly reducing

the risk of attacks and the threat posed by audio deepfakes.
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Figure 11: Overall performance heatmap.
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Figure 12: Average performance among 26 participants.

9.3 System Robustness
9.3.1 Impact of Unseen Sentence. To assess the practicality of F2Key,
designed to address the challenge of speech verification regard-

less of speech content, we invited ten participants (from the 26

participants) to conduct a secondary unseen data collection. Each

participant was asked to speak each of the 20 randomly selected

sentences from the TIMIT corpus [28] three times. The TAR of

their user-specific model was evaluated for each legitimate user

using these 60 utterances. Furthermore, we conducted a zero-effort

attack using other participants’ utterances to assess the FAR. The

three utterances of each sentence are subjected to a majority voting

process to determine the final result. As Fig. 13(a) shows, the TAR

is all above 89% with a mean value of 95.7%. Zero-effort attacks

have a low passing rate (< 2%), even if sentences are not included

in the training set. This experiment demonstrates that F
2
Key can

be used in the open world.

9.3.2 Impact of Headphone Model. As mentioned in § 9.1.2, we

implement F
2
Key on three COTS headphones. We selected two

participants to collect two sets of data (450 sentences for each)

using G733 and ATH-G1WL. Their data is used to attack each other

to assess FAR. Fig. 13(b) illustrates the performance achieved by

pairing a modular Antlion+XM4 is the best, owing to the latter’s

high-quality speakers with a broad frequency response of 4Hz to

40,000Hz, compared to the G733 and G1WL’s range capping at

20,000Hz. Therefore, the latter two devices exhibit lower perfor-

mance (2.7%–4.8%) than the former due to greater signal distortions

caused by speaker limitations.

9.3.3 Impact of Ambient Noise. We evaluate the performance of

F
2
Key under three different types of noise: air conditioning noise

(∼40 dB), soft instrumental music (∼50 dB), and competing speech

(∼60 dB) at about 0.5m from the hardware. Three participants are

involved in this experiment; we test 20 sentences on their user-

specific models without retraining or fine-tuning. From the result

(Fig. 13(c)), we find that the operation of an air conditioner causes

extra background noise in the real spectrograms, leading to a slight

performance degradation (about 6%) in TAR. However, when faced

with noise, such as music and competing speech, the mixing of

noise directly changes the spectrograms, challenging F
2
Key from

its principle. As a result, performance is severely impacted. It is a

universal limitation in voiceprint-based systems; we will discuss

the promising solution in § 11. Furthermore, when countering these

troublesome noises, attackers will also fail.

9.3.4 Impact of Re-wearing. To assess the robustness of F
2
Key

under re-wear with an inevitable displacement each time, we invite

three participants to take off and re-wear F
2
Key, repeating three

times. We collect 20 sentences each time and test them using their

user-specific models without retraining or fine-tuning. Fig. 13(d)

shows that the re-wearing experiments present a TAR of 94.5% on

average, and the mean FAR is 3.9%. In general, re-wearing does not

significantly affect usability and security.

9.3.5 Impact of Facial Variations. In practice, a user’s face may

exhibit slight variations due to reasonable factors, such as wearing

glasses or applying makeup. Since makeup primarily affects visual

appearances without altering actual facial structures, it does not

affect our system. To investigate the impact of common add-ons,

we invite three participants to conduct a control experiment. Specif-

ically, we collect 450 utterances from the three participants both

with and without glasses. First, the data of a training group were

used to fine-tune the basic pre-trained model to obtain a trained

model, which was then tested directly with the control group’s test

data. Then, we switch the training and control groups and repeat

the experiment. By averaging the absolute values of the differences

in FRR of both tests, we evaluate the impact of wearing glasses as a

facial variation. The results show that this condition increases the

FRR by 0.36%, indicating a slight effect on the system performance.

The reasons behind it can be found in Fig. 5(a), the areas around the

user’s eyes are less active when speaking. Moreover, since wearing

glasses is a static feature that does not dynamically affect multi-

path during speech, its influence on extracting CIR-spectrogram

mapping relationships is negligible.

9.4 Attack Experiments
In this section, we consider the most promising attacks to challenge

F
2
Key. Since there are bound to be nuances between the synthesized

and real speech of a victim, and given the varied and often unfair

synthesis methods, we do not consider synthetic attacks. Instead,

we directly challenge the most intractable replay and hybrid attacks

that use real speech. The results are integrated in Fig. 15.

9.4.1 Replay Attack. Fig. 14(a) illustrates the replay attack scenar-

ios where an attacker records audio from the victim’s headphones

using a microphone positioned 0.5 meters away in four directions

135



MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Duan et al.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U100
20
40
60
80

100

R
at

e 
(%

) 97
.2

97
.2

93
.9

97
.2

97
.2

93
.9

89
.6 99

.3

97
.2

93
.9

1.
3

1.
4

1.
0

1.
3

0.
8

1.
8

1.
3

1.
6

1.
0

1.
1

TAR FAR

(a) Unseen sentence impact.

Antlion G733 G1WL0
20
40
60
80

100

R
at

e 
(%

) 98
.2

95
.5

93
.5

4.
9

5.
7

6.
0

TAR FAR

(b) Headphone model impact.

Speaker MusicAir conditioner0
20
40
60
80

100

R
at

e 
(%

)

71
.7 81

.7 91
.7

0.
0

0.
0 3.
3

TAR FAR

(c) Ambient noise impact.

O R1 R2 R30
20
40
60
80

100

R
at

e 
(%

) 98
.2

95
.0

91
.7 96
.7

3.
8

4.
2

2.
5 5.
0

TAR FAR

(d) Re-wearing impact.

Figure 13: F2Key robustness.
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Figure 15: Attack experiments results.

(front, back, left, and right). The attacker then blocks the head-

phone’s earpad with soundproof material and plays the recorded

audio to attack F
2
Key. However, F

2
Key successfully resists these

attacks, with a success rate below 0.3%. The reason is that the leaked

FMCW signals did not sweep across the user’s face and did not

yield informative CIR profiles, especially when recording from the

front, back, and left. Additionally, audio from the boommicrophone

side (right) has poor resolution for small-scale perturbations and

extremely low SNR in the FMCW signals, rendering the recorded

audio unable to effectively breach F
2
Key’s defense.

9.4.2 Mimicry Attacks. Fig. 14(b) illustrates the mimicry attack sce-

narios where attackers observe the victim, including facial gestures

and speech, and then try to access F
2
Key by imitating these obser-

vations when unattended. The result shows that by intentionally

mimicking the victim’s articulatory gestures and timbre, the suc-

cess rate of the mimicry attack presents an increase of about 0.9%

compared to the zero-effort attack elaborated in § 9.2. Although

attackers can observe the victim freely, the similarity achieved by

imitation is limited without professional training, allowing F
2
Key

to resist 96.4% of mimicry attacks.

9.4.3 Hybrid Attacks. Fig. 14(c) illustrates the hybrid attack sce-

narios similar to those of mimicry attacks. The difference is that

the attacker replays the recording of the victim’s speech and si-

multaneously performs silent speech. The results show that even if

the victim’s voiceprint is stolen, the attacker’s unregistered facial

biometric information fails to provide effective CIR profiles and fur-

ther match the CIR-spectrogram mapping relationship embedded

in the generative model. As such, F
2
Key can resist 95.3% hybrid

attacks and significantly improve the reliability of voiceprint-based

authentication and the anti-counterfeiting of audio artifacts.

9.5 Identical Twins Study
Among our 26 participants, there is a special case that the 22

nd
and

23
rd

participants are a pair of identical twins. They have extremely

similar facial features. To verify the similarity of their faces, we

tested the Face ID function [1] on each of their iPhones. The results

showed that both could unlock each other’s iPhones within three

attempts. In such a special case, the authentication methods based

solely on facial images or structure become ineffective; furthermore,

liveness detection also fails to compensate for this.

We consider an extremely special case—the spoofing attack be-
tween identical twins. Specifically, we invited the twins to repeat

the content of the experiment in § 9.4.3, as shown in Figs. 16(a)

and 16(c). One of them was wearing F
2
Key and speaking in silence,

while the other was looking at the same text, loudly reading the

same sentences. Note that this is different from § 9.4.3, the rea-

sons are two-fold: (1) Different from playingback the previously

recorded audio on electronic devices. This experiment uses the

live voice of a victim. In this situation, even the most advanced

voice-liveness detection methods will fail. (2) The two individuals

have extremely similar faces; therefore, the “key” embedded in the

generative model may be more similar.

The results show in Figs. 16(b) and 16(d), we find that there are

noticeable differences between the inferred spectrogram and the

real one produced by the attacker; the attack experiment achieves an

average success rate of 24.5%. The reason is that although the twins

have very similar facial features, there are noticeable differences in

their timbre of speech and habits in articulatory gestures. Therefore,

the CIR-spectrogram mapping relationships have significant differ-

ences. These experiments were carried out merely to investigate the

effectiveness of the proposed joint defense mechanism in defending

against attacks between identical twins with highly similar facial

features. However, in real-world scenarios, it is impossible for a
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victim to collaborate with an attacker to compromise their own

devices.

9.6 Computational Delay
We evaluated F

2
Key’s computational delay on four devices (i.e., a

laptop with an RTX 2080Ti GPU, a server with an RTX 3090 GPU,

Samsung S10, and OnePlus 8T), focusing on three stages: signal pro-

cessing, generative model, and verification model. Signal processing

takes about 244ms, while the generative model needs 198ms on

the 3090 GPU and 318ms on the 2080Ti. The verification model

needs a minimal delay (12.3ms on 3090, 14.6ms on 2080Ti). F
2
Key

processes up to 5 s speech clips under 0.6 s if GPUs are available. For

the resource-constrained Samsung S10 and OnePlus 8T, the overall

computational delays are 1.97 s and 1.67 s, respectively. F2Key fa-

cilitates real-time voiceprint authentication and deepfake defense

in VoIP applications, and can be used on both local mobile devices

and cloud servers.

9.7 Auxiliary Spacers Impact Study
In this section, we assess the risk of privacy leakage and the impact

on listening experience caused by auxiliary spacers, the playback

volume is set to 50% of the maximum volume.

9.7.1 Privacy Leakage Study. Fig. 17(a) illustrates a test where a
microphone, placed at distances from 20 cm to 100 cm from F

2
Key

mounted on a head model, captures sound leakage. The test mea-

sured sound leakage from F
2
Key, from Fig. 17(b), we observed that

the volume of the music decreased and plateaued beyond 40 cm.

Speech recognition
2
was evaluated using the word error rate (WER)

metric, the results showing that the ASR system failed to recog-

nize speech due to the low SNR (the WER defined as 100%), which

confirms the limited privacy risks associated with F
2
Key.

2
The speech recognition is performed by Google Cloud Speech API [29].

9.7.2 Listening Experience Study. To evaluate sound reception, we

used a 10 s chirp spanning 20Hz to 20,000Hz. The chirp, played

by F
2
Key, was recorded by a microphone attached to the external

auditory canal of a head model, as shown in Fig. 17(c). The receiver

gain analysis measured in dB is presented in Fig. 17(d), which shows

consistent receiver gain patterns across frequencies, with a minor

drop at higher frequencies when using spacers, particularly above

8,000Hz. However, sincemost human audio lies below 8,000Hz [11],

the auxiliary spacers have a negligible effect on the intelligibility

of the audio but can affect the listening experience of some high-

fidelity music, which is a minor limitation of F
2
Key.

10 RELATEDWORK
Audiovisual DeepfakeDetection. Fakemedia creation, especially

audiovisual deepfakes, is an active research area, thus leading to

significant efforts in the anti-counterfeiting of artifacts. Existing

deepfake detection methods for video rely mainly on inconsistency

detection (e.g., artifact warping [43], blending boundaries [42], and

fingerprinting [86]) and metadata embedding (e.g., provenance cre-
dential [47], quick response code [46, 62], and temporal content

hashes [9]). However, deepfake detection in the audio domain re-

mains relatively underdeveloped [85]. The existing methods rely

on spectral features in terms of magnitude spectrum [79], phase

spectrum [78], and modulation spectrum [58] to detect spoofing

attacks. Recent research has focused on more discriminative deep

features that can be learned, such as relationships among breath-

ing, talking, and silence sounds [18], utterance level average [15].

In contrast to these methods, F
2
Key establishes a stable acoustic

sensing field to link user facial structures and articulatory habits

with the corresponding speech in a multi-modality way, allowing

anti-spoofing user authentication and audio deepfake defense.
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Earable Sensing. Recently, researchers have explored earable de-

vices, given their portability and potential for various applications,

such as on-face interaction [81], face reconstruction [41, 77], speech

enhancement [14, 31, 59], and silent command recognition [38, 67].

In numerous studies, they can be divided into two categories, cus-

tom prototypes and COTS devices. Some researchers fabricated cus-

tom prototypes for novel applications, such as blood pressure mea-

surement [8], microsleep event detection [53], eavesdropping [45].

Furthermore, numerous studies have incorporated in-ear micro-

phones into COTS earbuds to explore wide-ranging applications

in areas such as health monitoring [8, 10, 37], behavior recogni-

tion [36, 50, 54, 65], user authentication [21, 26, 27, 75, 76, 80],

etc. However, these studies rely on custom hardware or require

earphone remodeling. Therefore, considering the constraints of

dedicated and remodeled earable devices, researchers have shifted

their focus to implementing intelligent applications on COTS ear-

able devices. EarphoneTrack [12] proposed an innovative acoustic

motion tracking approach using earphones; HeadFi [20] measured

the imbalance between two earphones using a Wheatstone Bridge,

allowing applications such as user identification, heart rate moni-

toring, and gesture recognition; FaceOri [73] achieved head pose

detection by coordinating with a smartphone. However, to our

knowledge, no COTS-headphone-based physical security system

has been proposed. We propose F
2
Key, which is designed for the

anti-counterfeiting of artifacts, ensuring reliable voice interaction,

and enhancing voiceprint-based authentication systems.

11 DISCUSSION & FUTUREWORK
Integration with Mobility Systems. To illustrate the integration

of F
2
Key with existing mobility systems and voice-based appli-

cations, Fig. 18 shows the flowchart that combines F
2
Key with

smartphones in Voice over Internet Protocol (VoIP) applications.

When user A and user B make an Internet call, the voice or video

of user A is transmitted to a third-party server for relay via the

Internet, and then transmitted to user B’s smartphone. In this pro-

cess, the verification of F
2
Key can be integrated into the third-party

server. Specifically, both users should register and upload their user-

specific model that embeds the unique CIR-spectrogram mapping

relationships in advance. During the call, the server captures the

user’s voice at fixed intervals (e.g., five seconds without overlap)

and verifies it; if N consecutive segments are all denied, the system

highly suspects that the user’s voice may involve deepfake and

sends a warning to the client of the other party. When the status

indicator that represents credibility on the call interface changes,

one should be alert to the risk of fraud.

Ambient Noise Issue. As mentioned in § 9.3.3, ambient noise,

such as competing speech, will pollute the real spectrogram and

severely affect the performance. Although it is a universal limita-

tion for all voiceprint-based systems, the hardware configuration

of F
2
Key has great potential to address it. In our previous work

EarSE [19], we used the same hardware as F
2
Key to explore the

possibility of multi-modal speech enhancement. Since only the

user’s articulatory gestures perturb the acoustic field, affecting the

CIR profiles, while ambient noise does not, ambient noise can be

isolated and user speech can be filtered in for enhancement. The

results indicate that the hardware setting can increase SiSDR by

14.61 dB when facing competing speakers and background noise.

With the support of multi-modal speech enhancement, the impact

of noise will be mitigated to some extent. Given that EarSE and

F
2
Key are independent systems that perform different tasks, utilize

the same hardware. The effective integration of them will be the

main focus of our future research.

Comfort and Headphone Types. Besides the above discussion,
we also investigated the comfort of the hardware configuration

in previous work. The survey shows that about 70% users regard

the hardware to be comfortable to wear [19]. Although F
2
Key can

be established on COTS headphones without a boom microphone

(e.g., Sony WH-1000XM4), its application to earbuds still presents

limitations. Adding an outward-facing speaker module to the ear-

buds and combining it with the ambient noise microphone of the

opposite earbud to establish the acoustic sensing field presents a

promising solution.

12 CONCLUSION
In this paper, we proposed the first earable physical security sys-

tem, F
2
Key. It leverages the form factors of COTS headphones

equipped with a boom microphone and auxiliary spacers to create

a stable acoustic sensing field across the user’s face, which enables

fine-grained articulatory gesture detection. We modeled the re-

lationship between facial structures, articulatory habits, and the

corresponding speech using a challenge-response mechanism and

embed the mapping relationship into a generative model for further

verification. The proposed verification model will grant access or

confirm the authenticity, provided the wearer’s CIR-spectrogram

mapping relationship is consistent with the embedded one. The

results demonstrate that F
2
Key has both reliability and practicality;

it can resist 99.9%, 96.4%, and 95.3% of speech replay, mimicry, and

hybrid attacks, respectively.
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