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ABSTRACT
In this paper, we propose Argus, a wearable add-on system based
on stripped-down (i.e., compact, lightweight, low-power, limited-
capability) mmWave radars. It is the first to achieve egocentric hu-
man mesh reconstruction in a multi-view manner. Compared with
conventional frontal-view mmWave sensing solutions, it addresses
several pain points, such as restricted sensing range, occlusion, and
the multipath effect caused by surroundings. To overcome the lim-
ited capabilities of the stripped-down mmWave radars (with only
one transmit antenna and three receive antennas), we tackle three
main challenges and propose a holistic solution, including tailored
hardware design, sophisticated signal processing, and a deep neu-
ral network optimized for high-dimensional complex point clouds.
Extensive evaluation shows that Argus achieves performance com-
parable to traditional solutions based on high-capability mmWave
radars, with an average vertex error of 6.5 cm, solely using stripped-
down radars deployed in a multi-view configuration. It presents
robustness and practicality across conditions, such as with unseen
users and different host devices.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.

KEYWORDS
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1 INTRODUCTION
Human pose estimation (HPE), including skeleton tracking and 3D
human mesh reconstruction (HMR), remains a perennial research
topic due to its broad application value in tasks such as fitness
coaching [60], health monitoring [35], and virtual reality [78]. Con-
sequently, it has received significant attention from researchers [55].
Existing solutions attempted to solve this problem use various
modalities, such as visual modalities [6, 21, 28–30] (e.g., RGB, depth),
wearable modalities [16, 42, 72] (e.g., IMU, electromyography), and
wireless modalities [27, 32, 40, 49, 51, 68, 69, 76] (e.g., ultrasound,
Wi-Fi, mmWave). However, vision-based solutions are highly de-
pendent on light conditions and struggle to darkness or smoke;
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Fig. 1: Argus is the first multi-view, egocentric mmWave sens-
ing system enabling continuous HMR, breaking through the
limitations of frontal-view solutions.

while wearable-based solutions suffer from cumbersomeness and
lack of user-friendliness. Based on this, many wireless solutions
for HMR focus on using wireless signals. Among them, human
sensing and reconstruction based on mmWave [74] is a represen-
tative research direction because it offers high precision, better
penetration compared to Wi-Fi, and better interference resistance
compared to low-frequency ultrasound. Based on this fact, it has
garnered significant attention and led to many representative stud-
ies [11, 32, 66–68, 70, 73, 75] in the field.

Radio frequency (RF) signals are renowned for their non-contact,
imperceptible, and user-friendly characteristics, making RF-based
human sensing a subject of significant interest and leading to nu-
merous practical applications [2, 15, 22, 48, 52, 64, 65]. Previously, re-
searchers successfully used Wi-Fi for human skeleton tracking [77]
and mesh reconstruction [76]. However, because of the ubiquity
of Wi-Fi signals, they are prone to interference, and the sensing
granularity is coarse. As a result, researchers have recently shifted
towards using mmWave for human pose estimation and recon-
struction, leading to the development of a series of studies. Xue
et al. proposed mmMesh [68], which is the first human mesh re-
construction solution based on a commodity mmWave radar. Later,
several follow-up studies have been proposed to address remain-
ing challenges or to improve the solution from different perspec-
tives. For example, SynMotion [75] and mmGPE [67] were later
proposed to improve generalization by synthesizing mmWave sig-
nals; M4esh [66] and m3Track [31] were proposed for multi-target
tracking and reconstruction; several mmWave-native studies try to
improve HPE performance by introducing an additional mmWave
radar [32, 73] or employing advanced deep learning methods [70].
However, all of the above works focus solely on mmWave-based
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Table 1: Comparison with other solutions (❍–Not Available, ●–Available; Cons.: Consumption, TX #: Number of Transmitters,
RX #: Number of Receivers, Weight: Radar Weight).

Solutions Radar TX # RX # Board Size Weight Power Cons. Multi-View Sensing View Body Part

mmMesh [68] AWR1843 3 4 8.3 cm × 6.4 cm ∼245 g ∼2.08W ❍ Frontal Full
SynMotion [75] IWR1443 3 4 8.3 cm × 6.4 cm ∼245 g ∼2.1W ❍ Frontal Full
mmGPE [67] AWR1843 3 4 8.3 cm × 6.4 cm ∼245 g ∼2.08W ❍ Frontal Full
M4esh [66] AWR1843 3 4 8.3 cm × 6.4 cm ∼245 g ∼2.08W ❍ Frontal Full
m3Track [31] AWR1443 3 4 7.8 cm × 6.4 cm ∼245 g ∼2.1W ❍ Frontal Full
HUPR [32] IWR1843 3 4 7.8 cm × 6.4 cm ∼245 g ∼2.08W ❍ Frontal Full
SUPER [73] IWR6843 3 4 6.8 cm × 5.5 cm ∼137 g ∼1.75W ❍ Frontal Upper
mmEgo [33] IWR6843 3 4 6.8 cm × 5.5 cm ∼137 g ∼1.75W ❍ Egocentric Full

Ours BGT60TR13C 1 3 3.9 cm × 2.4 cm ∼7.5 g × 2 ∼0.35W × 2 ● Egocentric Full

HPE/HMR from a frontal view perspective, neglecting an intriguing
perspective—mmWave-based HMR from an egocentric view.

This interesting sensing view has several advantages over the
frontal-view solutions. First, frontal-view solutions are subject to
various limitations, such as sensing range and susceptibility to inter-
ference from others’ movements (i.e., multipath effect) or occlusion.
In contrast, using mmWave signals to sense a user from an egocen-
tric perspective is highly promising to circumvent these challenges.
Due to its on-body setup, the mmWave sensing field moves with
the target, and the controllable sensing range can effectively avoid
interference from others. Recently, the discovery of this ingenious
research perspective brought about the first mmWave-based HMR
solution from an egocentric view called mmEgo [33]. However,
using such an egocentric view and mmWave signals to sense the
user’s human body typically implies a solution lies at the intersec-
tion of wearable and wireless sensing. Therefore, how to elegantly
combine the characteristics of both remains a significant challenge.

Although the mmWave radar (i.e., IWR6843ISK-ODS [25]) used
in mmEgo offers excellent sensing performance due to its multiple
transmit and receive antennas, its size, weight, and high power
consumption make it unsuitable for wearable solutions, render-
ing mmEgo far from practical. Motivated by this, we propose our
solution—a pair of compact, lightweight, low-power mmWave-
based add-ons named Argus that can be magnetically attached to
various common host devices, such as VR headsets and headphones.

However, realizing this idea presents numerous unique chal-
lenges: (1) How can multiple factors be fully considered in
hardware design?All previous studies are based onwell-developed
Texas Instruments (TI) mmWave radars, such as the IWR6843,
IWR1843, IWR1443 series. These radars come with comprehen-
sive development kits, including the mmWave SDK and mmWave
Studio, which provide high-precision point cloud data, essential for
advanced applications. However, these radars are relatively large
in size and energy consumption, making them unsuitable for wear-
able devices that offer mmWave sensing in egocentric view. The
development of Argus adopts compact sensors that help reduce
the size of the hardware by significantly compromising the radar’s
capability, such as having fewer transmit and receive antennas. In
addition, these compact radars often lack the sophisticated devel-
opment kits needed to achieve high-precision point clouds, posing
a major challenge of this paper. (2) How to obtain the ground
truth label in a more practical and user-friendly manner?

Previous solutions all rely on expensive and high-precision Motion
Capture (MoCap) systems (e.g., VICON [59], OptiTrack [44], Azure
Kinect [41]) to provide high-quality labels for model training. How-
ever, such expensive MoCap systems are not commonly found in
personal applications, and their deployment is often constrained
by the available space, making mmWave-based HMR applications
less widespread and challenging to implement practically. There-
fore, acquiring high-quality labels for training using cost-effective
commodity devices is a significant challenge in enhancing the prac-
ticality of the system. (3) How does Argus overcome the dual
challenges of self-occlusion and specular reflection? Li et al.
has already mentioned the issue of self-occlusion of the lower body
by the upper body in egocentric views [33]. However, they used
a tricky approach by deploying the mmWave radar extended far
in front of the user’s head. Although this approach alleviates the
self-occlusion problem and avoids specular reflections from the
shoulders, it makes the system cumbersome and unsuitable for
common small devices such as headphones. Therefore, effective in-
tegration of form factor design, signal processing pipeline, and deep
neural network is essential to effectively address this intractable
challenge and provide a better user experience.

To address these challenges, we proposed a series of solutions:
(1) To holistically consider the multiple factors inherent in
hardware design, we propose an innovative solution (Fig. 1) that
considers multiple factors by employing a pair of compact mmWave
radars (i.e., BGT60TR13C [56]) as an add-on, magnetically attached
to a host device. Argus is the first portable mmWave sensing sys-
tem for egocentric-view HMR that analyzes multi-view mmWave
data (i.e., left and right), featuring a small size, lightweight, and
low power consumption (details shown in Table 1). Furthermore,
we have overcome the limitations imposed by the stripped-down
mmWave radar through advanced signal processing techniques
and deep learning. (2) To facilitate the widespread application
of Argus, we employ monocular-based human mesh estimation
using a single RGB-only camera (e.g., web camera, front camera
of a smartphone) to acquire training labels, instead of relying on
cumbersome and expensive MoCap systems. (3) To overcome
the challenges of self-occlusion and specular reflection, we
leverage multi-view sensing, namely, using dual egocentric-view
mmWave sensing fields from left ear and right ear to collaboratively
construct body meshes for the first time. Furthermore, we propose a
tailored range-gating and energy-compensation approach for Argus.
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Moreover, Kolmogorov–Arnold Networks (KAN) [36] is introduced
to improve learning efficiency due to its superior capability in han-
dling non-linearities, which are essential for modeling complex
high-dimensional relationships (e.g., multi-view egocentric HMR).
The contributions of this paper can be summarized as follows:

• To the best of our knowledge, Argus is the first system real-
ize the multi-view egocentric HMR by proposing a holistic
solution, including prototype design, FMCW signal design
and processing, and deep learning, etc.

• We first achieve multi-view mmWave sensing based on our
wearable prototype. Argus is based on the joint analysis of
mmWave fields with complementary fields of view, effec-
tively addresses the self-occlusion and shoulder specular
reflection issues.

• We propose and adopt a series of tailored techniques, such
as clutter removal, range gating, energy compensation, and
the introduction of KAN to enhance the system’s learn-
ing ability for high-dimensional non-linear representations.
These techniques make it possible to reconstruct human
meshes using compact and limited-capability radars.

• We perform a comprehensive evaluation of Argus, includ-
ing its performance on unseen users and several micro-
benchmarks. The evaluation results show thatArgus outper-
forms two state-of-the-art (SOTA) baselines, demonstrating
both robustness and practicality.

2 RELATEDWORK
mmWave-Based HPE and HMR. Driven by the contactless na-
ture and high precision of mmWave sensing, HPE and HMR based
on mmWave have received significant attention in recent years.
Xue et al. proposed mmMesh [68], using a commodity mmWave
radar (i.e., AWR1843) for frontal-view HMR. However, there are still
serveral challenges in this research area, such as the generalization
to unseen activities, multi-target effect. Motivated by this, Xue et
al. proposed their upgraded solutions M4esh [66] and mmGPE [67],
which solve the problem of reconstructing multiple human meshes
simultaneously and the generalization problem for unseen activi-
ties, respectively. To address the same problems in a different way,
Zhang et al. proposed SynMotion [75] which synthesizes mmWave
sensing signals to construct a mmWave dataset for generalization;
m3Track [31] is a contemporaneous work with M4esh, it trans-
forms the multi-target tracking task into a single-target HPE task.
Furthermore, numerous studies have been proposed to improve per-
formance by introducing multi-modality [11], extra mmWave radar
from another sensing view (i.e., vertical and horizontal) [32, 73], or
more advanced deep learning techniques [61, 70].

However, it seems that all the aforementioned works fall into a
cognitive bias: assuming that the mmWave sensing for HPE or HMR
must be performed from a frontal view. In fact, not all studies have
ignored egocentric-view sensing; mmEgo [33] was a pioneer in this
idea. It prototyped a conventional mmWave radar (i.e., IWR6843)
into a wearable device and made initial explorations of egocentric
mmWave sensing. However, because of its size, weight, and power
consumption, the design of mmEgo as a portable device was not
usable, and the single-view sensing solution proved inadequate in
addressing the challenges of self-occlusion and specular reflection.
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Fig. 2: Illustration of different coordinate systems and the
theoretical model of Argus.

To fill this research gap, we propose Argus, the first multi-view
sensing solution based on stripped-down mmWave radars. By in-
troducing several signal processing and deep learning techniques,
it achieves acceptable performance despite significant hardware
limitations, thereby improving the usability of egocentric HMR.
Earable Sensing.Recently, mobile sensing based on earable devices
has garnered widespread attention from researchers due to portabil-
ity and informative sensing positions, which serve as a platform for
multiple modalities, such as speech, ultrasound, electromyography
(EMG), and photoplethysmogram (PPG). Numerous applications
based on earable devices have been explored, such as speech en-
hancement [10, 17, 58], behavior recognition [26, 38, 39, 46], health
monitoring [4, 5, 8, 9, 12, 24], and user authentication [19, 62, 63].
In addition, there have been security studies based on earable de-
vices, covering both attack [34] and defense [18]. A recent study,
TinyssimoRadar [50], successfully integrated mmWave modality
with earable devices, achieving impressive performance in a sim-
ple gesture recognition task. However, the sensing capabilities of
mmWave extend far beyond this. To the best of our knowledge,
there has been no exploration of full-body pose estimation or mesh
reconstruction using earable devices equipped with stripped-down
mmWave radars. Argus is the first to tackle this challenging task
under hardware limitations, filling this research gap.

3 MODELING OF MULTI-VIEW SENSING
Before we delve into the detailed system design, we first model
the complementary multi-view sensing of the proposed system to
better elucidate our core idea and the rationale behind the hardware
configuration.

As Fig. 2 shows, we consider two representative sensing posi-
tions, 𝑃𝑜 (occlusion) and 𝑃𝑠 (specular reflection), in the pose esti-
mation task when using two downward-directed mmWave radars
with different fields of view (FOVs). We define the set of features
extracted from the two radars without occlusion at time 𝑡 as 𝐹𝑅𝑟 (𝑡)
and 𝐹𝑅𝑙 (𝑡), respectively. When line-of-sight occlusion occurs, such
as the raised right arm, it will affect the FOV of the right-side
radar, and further result in the loss of informative features (𝐹𝑜 ) and
inferior estimation at 𝑃𝑜 , which can be formulated as follows:

𝜃𝑠 (𝑡) =M(𝐹 ′𝑅𝑟 (𝑡)) =M(𝐹𝑅𝑟 (𝑡) \ 𝐹𝑜 ),
whereM represents the mapping function from extractedmmWave
features to joint rotations 𝜃𝑠 (single-view). To address the issue of in-
formation loss, the features extracted from the other mmWave radar
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Fig. 3: System overview. By transferring the knowledge fromRGB images as pseudo-labels, a well-trainedmodel will be deployed
in the testing phase to perform continuous 3D human mesh reconstruction.

(i.e., 𝐹𝑅𝑙 (𝑡)) can compensate for missing 𝐹𝑜 , thus improving the ro-
bustness and performance of the estimation. Furthermore, to align
the spatial semantic information from radars in different coordinate
systems (illustrated in Fig. 2), we perform coordinate transforma-
tion on the positional features extracted from both mmWave radars;
the converted features are aligned to the wearer’s body coordinate
system before combination. The enhanced multi-view estimation
can be be expressed as:

𝜃𝑚 (𝑡) =M(𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 (𝑡))
=M(T𝑟 (𝐹𝑅𝑟 (𝑡) \ 𝐹𝑜 ) ∪ T𝑙 (𝐹𝑅𝑙 (𝑡))),

where 𝐹𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 denotes combined features, T𝑟 and T𝑙 represent
the rotation operations for coordinate transformation.

Given that mmWave sensing usually uses selected point clouds
to reduce computational overhead and delay, the accumulation
of high-energy points caused by specular reflection (e.g., 𝑃𝑠 on a
shoulder) will eclipse the informative features caused by the torso.
Hence, to force the extracted features to focus on the wearer’s torso,
we need to specially design the FOV of the radars and propose an
ad hoc range-gating approach. Theoretically, it can be formulated
as follows:

𝐹𝑟𝑔,𝑅𝑖 (𝑡) = Sel(T𝑖 (𝐹𝑅𝑖 (𝑡) \ 𝐹𝑠𝑖 )), 𝑖 ∈ {𝑟, 𝑙},

where Sel denotes the operation of selecting informative features,
𝐹𝑠𝑖 indicates the specular reflection features, 𝐹𝑟𝑔,𝑅𝑖 (𝑡) represents
the refined features by using range gating; the overall theoretical
model of Argus can be formulated as:

𝜃𝑚 (𝑡) =M(T𝑟 (𝐹𝑟𝑔,𝑅𝑟 (𝑡) \ 𝐹𝑜 ) ∪ T𝑙 (𝐹𝑟𝑔,𝑅𝑙 (𝑡))) .

Overall, we have conducted a clear theoretical modeling of the com-
plementary multi-view sensing rationale of Argus in representative
cases (i.e., occlusion and specular reflection).

4 SYSTEM OVERVIEW
The system overview of Argus is shown in Fig. 3, which contains
two phases: a training phase in which the effective pseudo-labels
obtained from RGB frames serve as the supervision to develop a
KAN-based multi-view fusion network, and a testing phase where
the well-trained deep neural network can continuously reconstruct
multi-view mmWave frames into SMPL [45] parameters.

Specifically, in the training phase, we collect visual stream data
(RGB images) and mmWave stream data (data frames) using a com-
modity RGB camera and self-designed wearable add-ons (details
in Sec. 5.1), respectively. Then, we perform cross-modality data
alignment using a two-tier method, which is elaborated in Sec. 5.3.
Subsequently, the RGB frames are fed into the HMR 2.0 [21] neural
network to estimate the SMPL parameters of these frames. Mean-
while, the corresponding mmWave data frames are processed by the
proposed signal processing module (Sec. 5.4) and further translated
into the predicted SMPL parameters by the deep neural network
(Sec. 5.5). Since Argus is designed for on-body usage, an orientation-
fixing module sets the matrix that represents the global orientation
to the 3 × 3 identity matrix. Finally, the monocular-estimated and
mmWave-predicted SMPL parameters are rendered into outputs
(i.e., joint rotations, body meshes, skeletons). During training, the
losses between these outputs are optimized together.

In the testing phase, the well-trained deep neural network will
translate the processed multi-view mmWave features into SMPL
parameters. The parameters, arranged as a time series, will be
rendered into continuous body meshes or skeletons to support a
corpus of applications such as e-fitness yoga instructor, avatar in
the meta-universe, and virtual videoconferencing.

5 SYSTEM DESIGN
5.1 mmWave Stream & Hardware Design
As mentioned in Sec. 1, the hardware design of Argus should con-
sider multiple factors in a comprehensive way, which causes specific
difficulties that can be abstracted as follows:

• The hardware prototype needs to support stable sensor
configuration and data acquisition while maintaining a
lightweight form factor as an add-on for common host
devices, such as VR headsets and headphones.

• To facilitate effective sensor synchronization and efficient
data transmission, a dedicated intermediary should be in-
troduced between a mobile device and the two radars.

• It should be taken into account that user-friendliness and
orientation-invariance of the device play a vital role in the
performance and usability of the system.
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Fig. 4: Block diagram of Argus hardware.

Taking into account the factors mentioned above, we designed
the hardware shown in Fig. 4 to implement our prototype. It consists
of four main components: two radar boards for mmWave data
acquisition, a Raspberry Pi for sensor synchronization and data
transmission, and amobile device for data receiving, processing, and
rendering output results. Additionally, an RGB camera is utilized
only during the training phase to obtain pseudo-labels for training.
We now break down each of the components in detail.
Radar boards. The radar board is designed to configure and trans-
fer data from the mmWave sensor. It includes a baseboard with
a Microchip ATSAMS70Q21 32-bit Arm Cortex-M7 MCU, and a
daughter board hosting a BGT60TR13C [56] 60 GHz mmWave radar
sensor. The baseboard features two interfaces: a high-speed USB
2.0 connection for Raspberry Pi communication and a Serial Pe-
ripheral Interface (SPI) for mmWave sensor data transmission. It
also integrates circuits for power management and debugging and
the daughter board supports the radar chipset. The printed circuit
board (PCB) measures 17 × 12.7mm2, with the mmWave sensor’s
Antenna-in-Package (AIP) measuring 6.5 × 5.0 × 0.85mm3. The
setup of the radar chip consists of one transmit antenna and three
receive antennas arranged in an L-shape. The receiving antennas
are grouped into two pairs, while the antennas are separated by
half the wavelength (i.e., 𝜆/2) in each pair. Low-pass filters are em-
ployed to minimize the impact of noise and crosstalk on the supply
domains. Furthermore, an EEPROM connected via an I2C interface
stores data such as the board identifier, while an 80MHz quartz
oscillator ensures accurate timing for operations.
Raspberry Pi. The synchronization and transmission center, built
on a Raspberry Pi 4 with a Linux OS running specified radar Soft-
ware Development Kit (SDK), acts as an intermediary between a
mobile device and two radar boards. Powered by a power bank,
the Raspberry Pi manages the synchronization, maintaining a time
offset between the same frame from the left and right radars be-
low 10ms. It connects to the radar boards via USB interfaces to
transmit configuration parameters and receive data. Wireless con-
nectivity is facilitated by the built-inWi-Fi module of the Raspberry
Pi, allowing real-time communication with the mobile device. The
multi-view mmWave data is transferred to the mobile device for
computing in real time via a TCP protocol, ensuring the reliability
and integrity of data transfer.

Fig. 5: Argus 3D. Fig. 6: 3D sensing model.

Mechanical Design and System Integration. The two radar
boards are housed within 3D-printed enclosures (Fig. 5), which
are part of the integral Argus device designed to function as an
add-on for general host devices (e.g., headphones). These trans-
parent enclosures are custom-made for the radars of Argus, with
one side featuring an open window for the emission of mmWave
signals. Furthermore, the enclosures are designed to magnetically
attach to host devices. As Fig. 15(d) shows, by carefully designing
the pole arrangement of the four pairs of magnets on each side, it
ensures that Argus add-ons are attached precisely to the same posi-
tion each time and that left and right can be strictly distinguished.
When the radar is placed on the wrong side, the pole arrangement
creates repulsion rather than attraction. We modeled the sensing
scenario in Blender [13], as shown in Fig. 6, where the add-ons are
fixed to both sides of the user’s head, with the mmWave sensors
positioned approximately 8 cm horizontally from the user’s ears.
Each mmWave sensor has a maximum FOV of 90◦ and a maximum
sensing distance of 3.2m. From the multiple perspectives of the
simulated scenario shown in Fig. 6, it is easy to see that the sensing
range of Argus can effectively cover and detect the movements of
the user’s limbs.

In this section, we propose a holistic hardware solution that
considers multiple factors such as stability, synchronization, and
usability, addressing the first key challenge mentioned in Sec. 1.

5.2 Visual Stream & Pseudo-Label
Motivated by the high deployment overhead and the space limita-
tion of cumbersome MoCap systems used in existing solutions [66,
68, 75], we pioneeringly propose a more practical approach to ob-
tain pseudo-labels for training—estimating pose parameters from
monocular images.

In practice, we implement HMR 2.0, a cutting-edge human mesh
estimation network based on monocular images, which includes
a Vision Transformer (ViT) and a transformer decoder, on a com-
modity RGB camera. The ViT dissects the image into patches and
processes these through self-attention mechanisms, allowing the
model to capture global dependencies and intricate details across
the entire image; while the cross-attention-based transformer de-
coder further refines the process by selectively focusing on relevant
features extracted by the ViT. It dynamically adjusts its attention to
specific image regions that are more informative in predicting hu-
man meshes, effectively dealing with occlusions and complex poses.
By incorporating the ViT and transformer decoder, the network is
designed to efficiently parse and understand the complexities of
human poses and shapes from a monocular RGB image. The im-
plementation of HMR 2.0 follows the open-source repository [20].
However, to effectively use the pseudo-labels, we need to address
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Algorithm 1 Cross-Modality Data Alignment
Require: 𝑁 : Number of frames, 𝜏 : Threshold
Ensure: Data alignment within 𝜏 ms
1: 𝑡𝐼𝑚 , 𝑡𝐿𝑚 ← Query NTP, Record local time
2: 𝑂𝑚 ← 𝑡𝐼𝑚 − 𝑡𝐿𝑚 ⊲ mmWave offset
3: 𝑡𝐼𝑖 , 𝑡𝐿𝑖 ← Query NTP, Record local time
4: 𝑂𝑖 ← 𝑡𝐼𝑖 − 𝑡𝐿𝑖 ⊲ RGB offset
5: for 𝑓 = 1 to 𝑁 do
6: 𝑡 ′

𝐼𝑚 𝑓
← 𝑡𝐿𝑚 𝑓 +𝑂𝑚 ⊲ Calibrate mmWave modality to NTP

7: 𝑡 ′
𝐼𝑖 𝑓
← 𝑡𝐿𝑖 𝑓 +𝑂𝑖 ⊲ Calibrate visual modality to NTP

8: end for
9: for each continuous sequence do ⊲ Across 𝑁 frames
10: if Avg |𝑡 ′

𝐼𝑚
− 𝑡 ′

𝐼𝑖
| > 𝜏 then

11: Discard all 𝑁 frames
12: else
13: Use data for training
14: end if
15: end for

another challenge—the accurate alignment between mmWave frames
and RGB frames with different sampling rates.

5.3 Cross-Modality Data Alignment
We propose two countermeasures to achieve the goal of data align-
ment, as shown in Algorithm 1. First, before capturing the mmWave
data frames from both sides, the Raspberry Pi queries Network Time
Protocol (NTP) servers using the ntplib library [7] to obtain the
NTP timestamp 𝑡𝐼𝑚 and records the local timestamp 𝑡𝐿𝑚 at the same
time. By doing so, we can obtain the offset 𝑂𝑚 between the Rasp-
berry Pi’s local timestamps and the NTP timestamps, and further
convert the local timestamps of the recorded mmWave frames into
NTP timestamps. Similarly, we also calculate the time offset of the
image modality that is represented as 𝑂𝑖 . By converting the local
timestamps of both modalities into NTP timestamps, the data from
the two modalities can be aligned using the NTP timestamps. Sec-
ond, during the model development phase, if the difference between
the NTP timestamps of the mmWave data and the image data for a
certain frame exceeds a threshold 𝜏 , the data from that frame will
be discarded and will not participate in the deep learning model
training.

In scenarios involving time-series input, such as using a contin-
uous sequence of N frames as a sample, it is necessary to evaluate
whether the average timestamp difference across the N frames ex-
ceeds the threshold 𝜏 . By implementing these two countermeasures
together, the two modalities can be precisely aligned, and the syn-
chronization error will be controlled within 𝜏 . In this paper, we set
𝜏 to 20ms. At this stage, by integrating the approaches from Sec. 5.2
and Sec. 5.3, we address the second key challenge in Sec. 1.

5.4 Signal Processing
To extract informative features for HMR from Frequency Modu-
lated Continuous Wave (FMCW), we tailored a signal processing
pipeline as illustrated in Fig. 7. Specifically, the pipeline can be
divided into three main components: (1)Moving Target Indicator
(MTI), Clutter Removal, and Range-Doppler Processing for dynamic
object attention; (2) Energy Compensation, Digital Beamforming
(DBF), and Range-Gating for spatial attention; (3) Energy-Based
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Fig. 7: Signal processing pipeline.

and Velocity-Based Selection for informative point extraction. Next,
we elaborate on these components, starting with the dynamic ob-
ject attention, and present an example of the point cloud estimated
by the proposed pipeline in Fig. 8, Fig. 9, and Fig. 10.
MTI, Clutter Removal, and Range-Doppler Processing. The
radar configuration of Argus includes a frame period 𝑇𝑓 of 100ms,
containing 𝑁𝑐 of 128 chirps per frame. Each chirp is a linearly
modulated continuous wave with a bandwidth 𝐵 of 3GHz (60–
63GHz), consisting of 𝑁𝑠 samples and lasting𝑇𝑐 time. In this paper,
𝑁𝑠 and𝑇𝑐 are set to 128 and 700 µs, respectively, to achieve 5 cm fine-
grained spatial resolution for sensing. Before processing the raw
FMCW signal into range-Doppler maps, the impact of static objects
(e.g., walls within the radar FOV) should be carefully considered, as
they can interfere with the detection of moving targets and reduce
the effectiveness of the radar.

To mitigate interference from static objects, the MTI [53] method
is employed on raw data before Range FFT to suppress stationary
clutter signals. Fig. 13 shows the results of using MTI with the 𝛼𝑀𝑇𝐼
set to 0.3 and the previous five mmWave frames for static object
removal, before using MTI, the resulting point cloud is densely
located in regions with smaller Z values (≈ −0.3) due to specular
reflections from the shoulders and acromia. After using MTI, these
less active regions are partially removed by considering them as
static components. Since static components are effectively filtered
out, employing a velocity-based selection method allows the se-
lected fixed-count points to more accurately reflect the motion state
of the target. Furthermore, clutter removal is a critical step follow-
ing the range Fast Fourier Transform (FFT) on the Intermediate
Frequency (IF) signal. By capturing the average signal level across
all chirps at each range bin and subtracting this mean from the orig-
inal input data, the impact of static components can be effectively
removed, thereby enhancing the perception of human motions.

After applying MTI and clutter removal techniques, we have
removed most of the interference from static objects and clutter.
Next, we perform a Doppler FFT on the result of the range FFT (for
velocity information) to complete the range-Doppler processing.
Specifically, a Range FFT along the sample axis of each radar frame
results in 2D frames where the magnitudes signify the reflected
energy of targets at different distances; a Doppler FFT applied along
the chirp axis yields range-Doppler maps, where the magnitude of
each cell indicates the reflective energy of targets at specific ranges
and velocities.
Energy Compensation, DBF, and Range Gating. As discussed
in Sec. 1, a significant challenge in egocentric mmWave sensing is
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Fig. 8: PC (Velocity). Fig. 9: PC (Energy). Fig. 10: PC (Range). Fig. 11: Range-gating. Fig. 12: Multi-view.

(a) Point cloud w/o MTI (b) Point cloud w/ MTI

Fig. 13: Point clouds generated from the same mmWave
frame with and without MTI.

Algorithm 2 Energy Compensation for Range-Doppler Map
Require: 𝑟𝑑𝑠 : Range-Doppler spectrum
Ensure: Compensated range-Doppler spectrum
1: 𝑅,𝐶 ← shape(𝑟𝑑𝑠 ) ⊲ The number of range bins and channels
2: for 𝑐 = 1 to𝐶 do
3: 𝑀𝑟 ← mean(abs(𝑟𝑑𝑠 [:, :, 𝑐 ], axis=1)) ⊲ Range bins energy
4: 𝑀 ← mean(𝑀𝑟 ) ⊲ Mean energy across bins
5: for 𝑟 = 1 to 𝑅 do
6: 𝑚 ← mean(abs(𝑟𝑑𝑠 [𝑟, :, 𝑐 ]))
7: 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 ← 𝑀/𝑚 ⊲ Scaling factor
8: ˜𝑟𝑑𝑠 [𝑟, :, 𝑐 ] ← 𝑟𝑑𝑠 [𝑟, :, 𝑐 ] × 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛
9: end for
10: end for
11: return ˜𝑟𝑑𝑠

the dual obstacle posed by self-occlusion and specular reflection.
To address this challenge, it is essential to enhance the pipeline’s
spatial attention capability through signal processing techniques.
To this end, we apply DBF to align spatial features within defined
spatial grids, reducing randomness and dispersion while balancing
computational overhead and spatial resolution. Furthermore, we
propose two ad hoc methods, Energy Compensation and Range
Gating, which take effect before and after DBF, respectively.

Due to the energy attenuation of mmWave signals during trans-
mission, the magnitudes representing the energy level in range-
Doppler maps for the lower body are significantly weaker than
those for the upper body. This further leads to the point cloud, esti-
mated by detecting high-energy points from range-Doppler maps,
being concentrated in the upper body. To mitigate the impact of en-
ergy attenuation, we designed an energy compensation method for

range-Doppler maps, as shown in Algorithm 2. We apply different
scaling factors to range bins to make sure that the energy levels
of them are the same after compensation. The proposed energy
compensation increases the perception of the lower body range by
improving spatial attention. Subsequently, the DBF technique [54]
is applied to the compensated results as an alternative to the con-
ventional third FFT (i.e., angle FFT), reducing the ambiguity of the
projected points. Finally, we empirically gate range-Doppler maps
into two ranges (i.e., 0.3m–0.9m and 0.9m–1.5m) and estimate
point clouds from each range, respectively. By doing so, it can elimi-
nate the specular reflection from the shoulders and acromia (usually
within 0.3m), and focus the lower body separately (Fig. 11).
Energy-Based and Velocity-Based Selection. With the support
of the aforementioned components, the radar’s sensing ability for
dynamic targets and spatial information has been enhanced; how-
ever, refining the detected features to remove redundant informa-
tion is essential. Specifically, we first detect high-energy points
over a threshold of −3.5 dB in the aggregated range-Doppler map
and project these points into a 3D space. Then we filter the pro-
jected point cloud based on velocity, retaining only the top 𝑁𝑝𝑛
points with the highest and lowest velocities; here, we set 𝑁𝑝𝑛 to
32 based on experimental trials. Therefore, we can obtain 64 points
from the upper/lower body in one view. Finally, we can obtain
64×2 body parts×2 views = 256 points from each mmWave frame.
Using the energy-based and velocity-based selections above, the
estimated point clouds provide valuable information related to mo-
tion. Fig. 12 provides an example of the estimated point clouds from
different views that complement each other, alleviating the problem
of self-occlusion and enhancing the system’s sensing capability.

5.5 Deep Neural Network Design
After we obtain multi-view point clouds from the upper and lower
body separately, we elaborate on the design of the deep neural
network used to translate multi-view point clouds into joint rota-
tion matrices in this section. As Fig. 14 shows, the neural network
includes three main components: (1) PointNet++; (2) Long Short-
Term Memory (LSTM) and Kolmogorov-Arnold Networks (KAN);
(3) Multi-Head Attention. These components are designed to co-
operate seamlessly to capture and process the complex spatial and
temporal relationships present in the point clouds.
Multi-Scale Point Cloud Feature Extractor. For the specific task
of HMR, it is crucial to extract point cloud features across multiple
scales. The features extracted at different scales correspond to dif-
ferent levels of physical significance. As the scale radius increases
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Fig. 14: KAN-based multi-view fusion network.

from small to large, the extracted features transition from local to
global, enabling more precise HMR. To achieve this goal, we use
PointNet++ [47] as the point cloud feature extractor to capture
both local and global geometric features. It employs a series of
Set Abstraction layers that progressively group points based on
their spatial proximity and extract features from each group. This
approach allows the model to learn multi-scale features effectively,
making it well-suited for tasks that require detailed and hierarchical
understanding of point cloud, such as HMR.

Specifically, we use three SA layers to progressively downsample
the point cloud and extract multi-scale features. The first SA layer
samples 128 points using radii of 0.1m, 0.2m, and 0.4m, with each
radius having 16, 32, and 64 neighbors, respectively. The second SA
layer further downsamples to 64 points with radii of 0.2m, 0.4m,
and 0.8m, and the final SA layer aggregates global features without
downsampling. Feature Propagation layers are then used to propa-
gate the features back to the original point resolution, enabling the
network to learn both local and global features effectively.
LSTM and KAN. Besides a powerful point cloud feature extractor,
LSTM modules and KAN modules are also included in our deep
neural network to serve as important roles.

Since Argus is designed to accept a series of sequential mmWave
frames as inputs, we use the LSTMmodule to learn the relationships
between adjacent frames to smooth the output. The hidden state
from the previous time step (i.e., frame) in an LSTM is passed to the
next time step and used, along with the current input, to compute
the next hidden state. This allows the LSTM to capture andmaintain
temporal dependencies across the sequence, enabling the modeling
of long-term dependencies. After obtaining the deep features of the
current frame, we use KAN [36] to transform these deep features
into the dimensions required by the SMPLmodel. The core principle
of KAN can be represented as follows:

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
2𝑛+1∑︁
𝑗=1

Φ𝑗

(
𝑛∑︁
𝑖=1

𝜙𝑖 𝑗 (𝑥𝑖 )
)
,

where any multivariate continuous function 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) can
be decomposed into a sum of compositions of univariate continu-
ous functions 𝜙𝑖 𝑗 (𝑥𝑖 ) and Φ𝑗 . It offers two significant advantages:
(1) KAN, based on the Kolmogorov-Arnold representation theo-
rem [1, 43], can theoretically approximate any complex multivari-
ate function more effectively. For tasks like HMR, which require
high-precision multivariate function approximation, KAN provides
a more refined function mapping capability with fewer parameters

than fully connected layers, thereby improving reconstruction per-
formance; (2) The structure of KAN allows for better decoupling
of different input dimensions, which is particularly advantageous
when handling high-dimensional point clouds (e.g., view, body part).
This reduces model complexity, mitigates the risk of overfitting,
and benefits HMR, where joint rotations involve highly non-linear
and complex dependencies.
Multi-Head Attention. As mentioned in Sec. 1, a main challenge
in achieving egocentric mmWave sensing is the problem of self-
occlusion. To address this challenge, Argus features a hardware
design that enables multi-view sensing, and we further fuse the
information from the upper body to promote a more precise con-
struction of the user’s lower body. Specifically, we use the prediction
of the upper body pose 𝑃𝑢 as the K and V vectors in the attention
module and feed the features of the lower body 𝐹𝑙 as the Q vector.
This process can be formulated as:

MHA(𝑄𝑙 , 𝐾𝑢 ,𝑉𝑢 ) = softmax
(
𝐹𝑙𝑊𝑄𝑙

𝑃𝑢𝑊
⊤
𝐾𝑢√︁

𝑑𝑘𝑙

)
𝑃𝑢𝑊𝑉𝑢 ,

where𝑊𝑄𝑙
,𝑊𝐾𝑢 , and𝑊𝑉𝑢 are the projection matrices for the Q, K,

and V vectors, and 𝑑𝑘𝑙 is the scaling factor. The reason behind this
design is to leverage the global information encoded in the upper
body prediction to guide the lower body pose estimation, ensuring
consistency and coherence between the two. The attention mech-
anism can effectively query the relevant global features from the
upper body, helping to refine and adjust the lower body prediction.
This method preserves the hierarchy of information, where the
prediction of the lower body is guided by the upper body, leading
to more reasonable and precise pose estimation. Our deep neural
network, with 42.4K parameters, is well-designed to run smoothly
on mobile devices.

With this combination of the signal processing pipeline (Sec. 5.4)
and the multi-view fusion network (Sec. 5.5), the third key chal-
lenge in Sec. 1 is well addressed.

6 EVALUATION
6.1 Testbed and Experimental Settings
Testbed.We use a monocular RGB camera (Logitech BRIO Ultra
HD Pro [37]) combined with the advanced image-to-mesh approach
(HMR 2.0 [21]) to extract pose parameters for the SMPL model from
monocular images. Specifically, as Fig. 15 shows, we place the cam-
era in front of the participant and delineate a 1m × 1m area. Note
that, participants’ activities can go beyond the area. The purpose
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Fig. 15: The testbed of Argus. The camera is used only to obtain pseudo-labels for training; once the model is trained and
deployed on mobile devices, user movements are no longer restricted by it.

of setting this boundary is to assist participants in self-correction
when they are in motion, preventing them from straying signif-
icantly from the camera’s FOV. The camera can capture images
from the real world up to 4K resolution. However, considering the
balance between image quality and storage space, we use 640× 480
as our implementary resolution, which means that low-cost RGB
cameras with lower resolution are also applicable. For a better com-
parison, we follow previous studies [68] and extract the estimated
rotation matrices of the unlocked joints (i.e., except the wrist, hand,
ankle and foot joints) as the target of training while setting the
rotation matrices of the rest joints as identity matrix.
Experimental settings. We comprehensively evaluate the perfor-
mance of Argus in various situations and compare it with open-
source SOTA baselines. Unless otherwise specified, all experiments
were carried out with a time-ordered split of 70%, 20%, and 10% for
the training, validation, and testing datasets, respectively. Note that
although the training, validation, and testing data come from the
same collection session (per participant per activity), the data split-
ting follows a causal structure (without overlapping frames). This
ensures that the prediction of a sample (N consecutive frames) does
not depend on any future data. The Adam optimizer, with a default
learning rate of 0.0003 and a batch size of 16, was adopted. The
learning rate was decayed by a factor of 0.9 after each epoch, with
a maximum of 50 training epochs and a patience of 5 epochs. Only
the training dataset was segmented with a 1-frame overlap in tem-
poral order, while the validation and test datasets were segmented
without overlap.

6.2 Data Collection
In this paper, we invited 16 participants (9 males and 7 females, aged
21 to 32, with heights ranging from 1.58 to 1.90m and weights from
49 to 83 kg) to perform 10 daily activities1. To comprehensively
assess the perception capabilities of Argus across different body
regions (i.e., upper limb, lower limb, whole body), as Fig. 16 shows,
the 10 activities include: (a) torso rotation; (b) arm swings; (c) bicep
curl; (d) deep squat; (e) lunges; (f) leg swings; (g) marching in place;
(h) walking back and forth; (i) side balance reach; (j) at ease. For
each activity, each participant continues to perform it for 2min. The
1This study has received the ethical approval from the authors’ institution.

sampling rates of mmWave radars and the RGB camera are 10Hz
and 30Hz, respectively. We collected data over a long timespan (half
amonth) across three different locations to introduce environmental
diversity. However, to maintain consistency in the main dataset, we
ensured open surroundings free of clutter during data collection. As
a result, the dataset contains 12,000 frames per participant, and the
entire dataset contains more than 200,000 image-mmWave frames,
including the data for the evaluation of micro-benchmarks.

6.3 Evaluation Metrics
We use the following metrics to evaluate the meshes reconstructed
by our system for the activities mentioned above:

• Average Vertex Error (V) [3, 77]. The average vertex error
by averaging the Euclidean distance between the vertices of
reconstructed meshes and that of the corresponding GT2.

• Average Joint Localization Error (S) [27, 77]. The av-
erage skeleton error by averaging the Euclidean distance
between the joint locations of reconstructed skeletons and
the corresponding GT.

• Average Joint Rotation Error (Q) [68]. The average joint
rotation error between the predicted joint rotations and the
corresponding GT.

Note that we did not include some metrics (e.g., mesh location error,
gender prediction accuracy) used in previous studies [66–68]. The
reason is that Argus is a wearable system designed for self-sensing
rather than sensing others. In such scenarios, users can provide ac-
curate gender information and can use the body shape parameters
(i.e., betas) estimated by the monocular camera directly. Further-
more, given that Argus is attached to a head-mounted host device,
it shares the same coordinate system with the user. Therefore, these
metrics (e.g., global location) are not included.

6.4 Overall Performance
We first exclude the data of four randomly selected users to serve
as unseen users for further evaluation; their data are not included
in any training or testing process except in Sec. 6.6. Subsequently,
we train a user-specific model for each user and use the set of these

2GT means the labels generated from the ground-truth RGB images.
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(a) torso rotation (b) arm swings (c) bicep curl (d) deep squat (e) lunges

(f) leg swings (g) marching in place (h) walking back and forth (i) side balance reach (j) at ease

Fig. 16: Illustration of activities (left), ground truth (middle), and prediction (right) by Argus. (a)–(c) are upper-limb activities;
(d)–(f) are lower-limb activities; (g)–(j) are whole-body activities.
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Fig. 20: Baseline comparisons.

training data to train a basic model to evaluate performance on
unseen users. As Fig. 17 shows, the performance of Argus across
all participants is stable, with average V, S, and Q errors of 6.8 cm,
5.3 cm, and 6.6◦, respectively. However, the errors for Participant 2
are the highest, which can be attributed to the participant’s height
of 1.90m. Following the signal processing described in Sec. 5.4,
the mmWave features over 1.5m will be eliminated by the Range-
Gating; it does not adequately cover the lower body range. Further-
more, the absolute errors of the reconstructed meshes are positively
correlated with the user’s height.

We also conduct an in-depth analysis to investigate the perfor-
mance of Argus in different activities and regions. The average
errors for each activity are shown in Fig. 18; we find that the per-
formance varies significantly. In general, the errors are higher for
actions with greater complexity. For example, the side balance reach
activity presents the highest V error, averaging 7.7 cm. The perfor-
mance of Argus on the three different evaluation metrics does not
show a significant correlation among activities. Although V error
is as large as 7.5 cm during torso rotation activity, Q error is only
4.2◦. For different regions (Fig. 19), the V and S errors are relatively
stable, while the Q error for lower-limb and whole-body activities
is 1.1◦ higher than that for upper-limb activities.
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6.5 Baselines
We compare Argus with two egocentric SOTA baselines [33, 68]
declared in a recent study [33]; the implementation of these base-
lines adopts the open-source code [23, 71]. Furthermore, to assess
the effectiveness of KAN and the gain brought by the multi-view
configuration, we introduce three ablation baselines. Specifically,
we replace all KAN modules with MLP modules (of the same dimen-
sions) to create a baseline named MLP-LR. Additionally, to validate
the benefit of the multi-view configuration for HMR under self-
occlusion, we have added two baselines (KAN-L and KAN-R). In
these baselines, we only use the mmWave data from one-side radar
and discard the input from the opposite side to mimic a single-view
solution. For fair comparison, we use data from the 12 participants
in Sec. 6.4 to train models with three different neural networks, and
test them on the testing data.

Fig. 20 shows that Argus outperforms the two SOTA baselines
(i.e., mmMesh and mmEgo), achieving a 17.7–30.9% reduction in
V error and a 14.7–35.4% reduction in Q error. The improvement
can be attributed to the collaboration between PointNet++ and
KAN, which are optimized for data involving hierarchical features.
Furthermore, the multi-view configuration achieves an average
gain of 21.2% and 22.9% in V and Q, respectively, over the single-
view baselines. Although the performance does not reach the levels
achieved by a previous study [33], it is important to note that the
previous study was based on a high-capability, high-power, and
high-cost radar, which features an equivalent 4 × 4 antenna array.
In contrast, Argus utilizes stripped-down radars that feature an
equivalent 2 × 2 antenna array. We overcome hardware limitations
and, for the first time, achieve comparable performance with a
system based on high-capability radars.

10



Argus: Multi-View Egocentric HMR Based on Stripped-Down Wearable mmWave Add-on

640x480 480x360 320x240
0

2

4

6

8

10

D
is

ta
nc

e 
(c

m
)

6.
8

6.
9

7.
3

5.
3

5.
5

5.
9

V S

0

2

4

6

8

10

A
ng

le
 (°

)

6.
6

6.
8

7.
2

Q

Fig. 23: Resolutions.
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Fig. 27: Multipath.

6.6 Unseen Performance
Considering real-world application scenarios, we evaluate the per-
formance of Argus on unseen users (2 males and 2 females) and
unseen poses using leave-one-out method. Specifically, we first
evaluate the basic model’s performance on them by testing directly
(without fine-tuning). Then, we fine-tune the basic model using a
sub-dataset that accounts for 𝑥% of all training data for each partic-
ipant. By increasing the value of 𝑥 , our goal is to explore how much
data is required to fine-tune the basic model to achieve satisfactory
results for an unseen user. As Fig. 21 shows, when the training data
used for fine-tuning reaches 30% of the total, the model achieves
remarkable performance. Furthermore, owing to the generalization
obtained from training data across multiple users, the performance
of the model fine-tuned with 30% of the new user data surpasses the
average performance of the user-specific models. Therefore, when
deploying Argus for a new user, theoretically only 14×0.3 = 4.2min
of the new data collection is needed to deploy. For unseen poses, the
Violin plot (Fig. 22) shows unstable performance, with average V
and Q errors of 8.0 cm and 7.1◦, respectively. Compared to vertices
estimation, the results also reveal greater stability in rotation esti-
mation, which may be attributed to the kinematic representations
embedded in the trained model.

6.7 Other Micro-benchmarks
We also evaluate several factors as micro-benchmarks.
Image resolution. Most current mobile devices can capture RGB
images with resolutions higher than 640 × 480. To simulate budget
devices with lower-quality cameras, we downsample the RGB im-
ages to 480 × 360 and 320 × 240, evaluating the performance under
lower-quality labels.
Image background. To evaluate the impact of the experimental
background on the effectiveness of labels extracted by the proposed
MoCap system, we invite two participants to record a new set of
data at different experimental sites.
Host device.We select two participants and replace the host device
with a VR (i.e., HTC VIVE Pro Eye [14]), using the same magnetic
attachment method as shown in Fig. 15(d). A new set of data is
collected for each participant to evaluate the performance of Argus
on different host devices.
Type of clothing. To evaluate the robustness of Argus, we se-
lect two participants and collect data while they wear different
clothing. Specifically, for each participant, in addition to the data
(wearing a hoodie) collected in Sec. 6.4, we also collect data while
they wear an interchangeable jacket and a down jacket, with all
other experimental settings the same.

Multipath effect. Since mmWave sensing suffers from the multi-
path effect, we evaluated the robustness of Argus to scatters and
reflectors, such as clothes and furniture. Two participants collected
additional testing data with sundries placed close by without hin-
dering activities. In Scenario 1, a chair with a backpack was placed
next to the participant. In Scenario 2, an additional chair with a
down jacket was added. Testing the model trained in a clutter-free
scenario allowed us to assess the robustness to multipath effects.

The results are listed in Fig. 23–27, Argus is robust to image
resolution and background. For different devices, the variation in
geometry directly affects the deployment angle and spatial position
of Argus, and the results show that deploying Argus on a VR system
leads to V and S errors that are approximately 3% and 5.7% higher,
respectively, compared to deploying it on a headset. The user’s
clothing significantly affects system performance. Clothing with
large reflective surfaces, such as down jackets, exacerbates both self-
occlusion and specular reflection issues. As a result, the inability to
precisely estimate joint rotations and positions leads to substantial
errors in the results.

6.8 Computational Delay
To verify the practicality of Argus, we evaluate its computational
delay. Unlike previous studies [33, 68], which used TI xWRxx43
radars with well-supported C-based signal processing to obtain
point clouds, our work involved engineering efforts to process raw
signals from BGT60TR13C radars, which lack such support. We
developed a Python-based signal processing pipeline, allowing for
greater customization of processing details. Despite the current
signal processing time being 0.880 s on an Intel Core i7 CPU, the
model inference and SMPL rendering times are 11.6ms and 1.5ms,
respectively, leading to an overall algorithmic delay of 0.89 s.

Based on a previous study [68] using a AWR1843BOOST radar,
which reported a 28ms processing time for converting raw sig-
nals to point clouds, we reasonably estimate that transitioning our
signal processing to the C programming language and leveraging
hardware acceleration could reduce the delay to within 80ms (ap-
proximately a 10x speedup from Python). Argus demonstrates the
feasibility of egocentric HMR using stripped-down radars. If well-
supported C-based signal processing and hardware acceleration are
supported for the radar, real-time HMR with an algorithmic delay
of less than 100ms per frame is achievable.

7 LIMITATIONS & FUTUREWORK
While our study shows the effectiveness of Argus for egocentric
HMR using stripped-down radars in a multi-view manner, it is
subject to the assumption that the user’s poses will not occlude the
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radars at close range, and there are limitations that require further
investigation.
Restricted activities. The head-mounted form factor of Argus
and significant head movements limit the detection of activities
above the ear level, such as raising arms overhead, resulting in
restricted activities in HMR. However, the supported sensing range
covers most daily activities. To overcome this limitation, adding ad-
ditional sensors, oriented differently, could be a promising solution
to cover the sensing blind spots. Furthermore, existing solutions,
including Argus, are mainly focused on predefined actions or their
combinations [33, 67, 68], where achieving good performance on
arbitrary actions remains a challenge in mmWave-based HMR. The
weak generalization ability is mostly due to insufficient data volume
and dataset diversity, which could be improved through few-shot
learning or meta-learning techniques.
More sophisticated hardware. Argus is a prototype featuring a
Raspberry Pi as an intermediary between mobile devices and radars.
Future work could involve designing a dedicated, more compact,
and faster PCB as the intermediary. Moreover, a more powerful
radar model has been released recently (i.e., BGT60ATR24C [57])
with 2 transmit antennas and 4 receive antennas are available, which
could further enhance the system’s performance in HMR task.

8 CONCLUSION
This paper introduces a novelmmWave-based add-on systemnamed
Argus, which is the first wearable add-on based on stripped-down
mmWave radars deployed in a multi-view configuration for ego-
centric HMR. The key idea of Argus is that the compact, limited-
capability mmWave radars on both the left and right sides can
form a multi-view sensing system that mitigates self-occlusion
and specular reflection issues in such an egocentric view through
complementary viewpoints. By addressing three unique challenges,
the limitations caused by the stripped-down radar are mitigated,
achieving performance comparable with solutions based on high-
capability radars. Extensive evaluation demonstrates the robustness
and practicality of Argus, making it a promising alternative to ex-
isting HMR solutions.
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